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Abstract. “Something you know,” in the form of passwords, has been
the cornerstone of authentication for some time; however the inability
to survive replay attack threatens this state of affairs. While “something
you know” may always be used in addition to “something you have” we
examine whether it can be salvaged as the solo factor for authentication.
A recent surge of interest in Challenge Response authentication schemes
raises the question whether a secret shared between the user and the
server can allow secure access even in the presence of spyware.

Our conclusion is negative. Assuming only a limit on the amount that
a user can remember and calculate we find that any scheme likely to be
usable is too easily brute forced if the attacker observes several logins.
This is true irrespective of the details of the scheme. The vital parameter
is the number of bits of the secret involved in each bit of the response.
When this number is too low the scheme is easily brute-forced, but mak-
ing it high makes the scheme unworkable for the user. Our conclusion
is that single factor “something you know” schemes have a fundamental
weakness unless the number of logins the attacker observes can be re-
stricted.
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1 Introduction

Authentication is commonly implemented by requiring a user to provide proof
of one or more of:

– Something you know (e.g. a password)
– Something you have (e.g. a smartcard)
– Something you are (e.g. a fingerprint).

Passwords have enjoyed a long run as the dominant means of authentication. An
active web user today will access financial institutions, social networking, and
email accounts using passwords. It is not uncommon for users to have twenty or
more password-protected accounts, and to type passwords several times per day.
With this success has come a host or problems and attacks. Users notoriously
choose weak passwords, potentially opening the door to brute-force attacks. The
Phishing phenomenon has shown that users can be lured into divulging their
passwords to sites masquerading as the real login server. Malicious spyware such
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as a keylogger can capture the password and thereby afterward allow an attacker
access to the protected account.

Despite these problems passwords are still almost universally used for account
access, even when assets of considerable value are protected. A majority of the
large banks and financial institutions in the US appear to use password only
access. The reasons for the success are clear: passwords are a simple and well-
understood technique. They allow institutions to offer users 24/7 access to their
accounts from any browser. No special hardware or training is required, and they
rely on memory only. In addition it is argued in [9] that losses from password
stealing attacks may not be as high as often assumed.

Our focus in this paper is on the failure of passwords to resist replay attack.
That is, a single login from a spyware infected machine gives an attacker every-
thing he needs to gain access to an account. If an unsuspecting user accesses
their bank account from an infected internet cafe machine it is easy for the spy-
ware to gather the userID and password and then access the account when the
attacker chooses.

There has been a great deal of password related work recently, which we at-
tempt to review in Section 2. Our goal in this paper is to evaluate mechanisms for
access control from untrusted machines that rely only on the memory and calcu-
lating power of the user. Examples are the recently proposed scheme of Weinshall
[17], the Virtual Password work of Lei et al. [12], the picture authentication work
of Pering et al. [15], and the work of Cheswick [3]. Each of these approaches at-
tempts to allow users to login securely from untrusted machines. That is, spyware
running on the machine and observing a login should not be able to use that infor-
mation to gain access to the account. To be useful, the scheme should allow several
logins from the same machine without giving the attacker enough information to
gain access. Golle and Wagner [7] for example recently showed that the Weinshall
scheme could be broken after observing 7 or so logins. We show how to break the
Virtual Passwords scheme of [12] in Section A.

The constraints that we impose are that the scheme should rely only on the
user’s memory and calculating ability. As we will see in Section 2 none of the
solutions proposed so far to the untrusted login problem possess all of the desired
features mentioned above. Our goal is to determine whether it is possible to
construct a scheme which satisfies all of the requirements. For example, can the
break in Weinshall’s scheme be fixed or is it a fundamental hole? The pattern of
progress on this question has been of suggested solutions, such as [17], followed
by rebuttals, such as [7]. This is an unsatisfying state of affairs. The problem
is important enough that researchers often return to it in hopes of a solution.
Yet, in breaking such a scheme we seldom find out whether that particular
scheme was flawed or whether there is a fundamental limitation that prevents us
from designing a “Something You Know” scheme that will withstand determined
attack. This paper demonstrates that the problem is truly a fundamental one:
Weinshall [17] and the other schemes commit the common error of failing to
involve enough bits of the secret in calculating each bit of the output. For any
scheme that fails to do so a brute-force attack can determine the secret given
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enough observed logins. The only ways to avoid this is to involve more bits of
the secret per output bit, increase the size of the secret, or restrict the number
of logins observed. But we show that increasing either the secret size or number
of bits used places an insupportable burden on the user: for example to involve
each bit of a 60-bit secret in each bit of a 20-bit login would require the user to
make two binary decisions per second at a sustained rate for 10 minutes in order
to login.

2 Related Work

2.1 Challenge Response Authentication

A scheme introduced by Weinshall [17] assigns a user thirty images to memorize.
When logging in the user is presented with a palette containing 8 × 10 images.
Starting at the top left corner he calculates a path by moving down or to the
right depending on whether the current image is one of his thirty images. On
reaching the bottom or right edge of the palette the path exits and he enters a
2-bit number to indicate the exit point. This is performed 11 times for a 22-bit
login. The scheme was broken using SatSolver by Golle and Wagner [7].

Pering et al. [15] suggest having the user upload a number of his own images.
When logging in he is presented with a palette of four images, one of which is
his. He selects his image (thus effectively giving away 2 bits) and repeats 10
times for a 20 bit login. Clearly the user must upload to the server at least 10×
as many images as the attacker will observe logins.

Lei et al. [12] propose a scheme to secure users’ passwords in spyware in-
fected environments. The user must calculate response symbols that are derived
from symbols of a fixed password and a challenge symbol string using modular
arithmetic. The complexity of the calculation appears considerable. The authors
suggest a helper application can be used to assist the user in performing the
calculations. We show how this scheme can be broken in Section A. Cheswick [3]
explores the general feasibility of allowing multiple logins from a single shared
secret. He proposes a number of approaches, but draws no definite conclusion
on whether the goal is attainable or not.

2.2 Logging in from Untrusted Machines

Pashalidis and Mitchell [14] propose a single sign-on system as a means of evading
spyware on an untrusted machine. Credentials are stored in the cloud and a
challenge response authentication is used to grant access. The user is assigned
a secret string, and when accessing the credentials is challenged to produce the
characters at three randomly chosen positions in the string.

Florêncio and Herley [5] propose a proxy-based solution where the user maps
the password in a fashion that is unmapped by a MITM proxy before forwarding
to the login server. The same authors suggest [2] a simple trick that allows a
user to evade current generation keyloggers when entering a password on an
untrusted machine.



424 B. Coskun and C. Herley

Lim [13] proposes a scheme to prevent spyware from capturing screenshots.
The user enters data from an on-screen keyboard. Rather than comprising a
single image the on-screen keyboard is formed from several images displayed in
rapid succession. A single screen shot at the time of the mouse click will not tell
the spyware what key was selected, while capturing many images will force the
spyware to consume resources thereby risking discovery.

One-time password systems such as S/Key [11,8] resist replay. SecurID [1] is a
well known commercial product that generates time-evolving one-time codes on
a keychain device that match codes generated at the server. In an enhancement
of [5] Florêncio and Herley [4] propose a proxy-based solution where the user
enters an encrypted version of the true password that is decrypted by the proxy
before forwarding to the login server. As with any one-time password system
the user must carry either a list of the one-time passwords, or a device that
calculates them. The scheme of [4] differs from [11,8,1] in that it works with
existing password servers without modification.

2.3 Alternatives to Passwords

Passwords are so widely used, and attacks on them so varied that a large lit-
erature has grown around addressing these attacks. We can give only a small
sample of recent password related work. Graphical passwords [10,16] address
the oft-cited problem with passwords that users have too many passwords to
remember and often make weak easily guessed choices. This approach promises
to improve the password strength and memorability, it of course does nothing to
address the replay attack. Florencio et al. [6] argue that passwords strength is
of limited importance when password stealing techniques such as phishing and
keylogging are the main threats.

Two-factor authentication is the practice of requiring possession of a piece
of hardware, or a biometric before allowing login. While far more secure tokens
often require an issuing authority, and require that the user carry something.
Our work can be seen as an examination of whether one factor schemes can ever
truly resist replay.

3 Challenge-Response Schemes

Shared secret (i.e. “Something you know”) schemes require that a user prove
that she knows the secret before access is granted to an account. Passwords are
the simplest case, since entry of the password, P, causes the server to conclude
that the request for access has come from the correct user. However, since the
secret is not dynamic, a single observation suffices to allow an attacker to break
the system. One-time password systems, by contrast, deny an attacker useful
information, even assuming he observes a login. Here, the user possesses a list,
rather than a single password, and enters the i-th password, Pi, on demand
from the server. The successive passwords Pi, can be derived from a single
secret, as with S/Key [11,8], dynamically generated on-the-fly as with SecureID
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[1], encrypted versions of a single static password as in [4] or just a pre-computed
set of random strings. In each case, of course, the user must carry the list of one-
time passwords (or the device that calculates them). We consider it unreasonable
to expect that a user will commit to memory a series of passwords each of which
will be used only once.

With a challenge response scheme the user again shares a secret S with the
server, but to login demonstrates that she knows the secret without revealing the
secret itself. Instead of delivering the entire secret, the user delivers something
derived from the secret in response to a challenge from the server. Thus the server
produces a random challenge Ci and requests that the user return f(S,Ci),
where f() represents a calculation that the user must perform (of which more
below). The server will produce a new challenge for each login, and hence the
attacker cannot simply replay an observed response, since

f(S,Ci) �= f(S,Cj).

The basic outline of the three authentication schemes discussed is given in
Figure 6.

While replay may not be possible on a challenge response scheme there is
still the possibility that given several observations f(S,Ci), for i = 0, 1, 2 · · ·
the attacker may be able to determine the secret S. Clearly this depends on
the function f(). Ideally, an attacker should be unable to determine the secret
even after observing many logins. If such a scheme exists it could be enormously
beneficial. It would share with passwords the fact that it is memory based and
requires no hardware. And yet it would entirely solve phishing, keylogging and
other password stealing attacks.

3.1 General Setup and Notation

We will assume that during a registration process the user and server agree to
share an N-bit secret S. For the i-th login the user provides the userID and
receives a randomly chosen challenge Ci from the server. Given this challenge,
she must calculate, and deliver to the server, the M -bit response

R = f(S,Ci).

This model is sufficiently general to cover the major existing challenge response
proposals e.g. [17,3,15,12].

The Secret. The size, N , of the secret space must be large. Recall that Ci is
known to the attacker, and of course f() must be public. If N is small enough
the attacker might just list the response

R
′
= f(S

′
,Ci)

for each of the 2N possible secrets. Any S
′
for which R

′
= R is a candidate for

the true secret. There would be only 2N−M candidate secrets after observing a
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single response. Subsequent logins would narrow the field further. The key to
avoiding this attack is that 2N must be too large for an attacker to list. The
tradeoff, of course, is that N must be small enough for the user to remember
and perform calculations on. A 256-bit secret space will resist enumeration, but
this is equivalent to a 77-digit PIN, and is probably far too much for a user to
remember. How many bits a user can be expected to remember and perform
calculations on is somewhat representation dependent. In theory users might be
able to remember an N = 80 bit secret (i.e. equivalent to an 24-digit PIN), but it
is hard to argue that they could also reliably perform calculations on such a large
secret. Weinshall [17] makes both the memorization and calculation tasks simpler
by making the user memorize the secret in a set membership format. At the lower
end if a machine can evaluate the response to 210 challenges per second (this
is approximately the rate we achieved with an implementation of the Weinshall
scheme [17]) then even a secret space of size N = 37 can be exhaustively searched
by a single machine in a single year. Since enumerating responses to a challenge
is a task easily divided among many machines we probably have to consider
secrets on the order of 50 bits as the minimum that can even be considered for
successive logins on a compromised machine. Thus we get a probable range for
the secret space, bounded below by 50 bits as the minimum to resist enumeration
and above by 80 bits as probably the most that a human can be expected to
remember and calculate on.

The Response. Of course R should be drawn from a large enough space to
make random guessing unlikely to succeed. For example, if M = 20 then a single
random guess at R has only a one in a million chance of succeeding. Since the
response must be entered using keyboard and/or mouse R is generally delivered
as a series of T symbols R = R(0)R(1)R(2) · · ·R(T − 1), where each R(t) is a
k-bit symbol and kT ≈ M. For example, the response to the challenge might be
a 6-digit number since log2(10) ·6 ≈ 20. In [17] the response is a series of T = 11
2-bit symbols, giving a 22-bit effective login.

The Challenge. The challenge is the random component that makes each
response different. The form that it takes depends on the form in which the secret
is stored. The main requirement is that the server have a large enough suite of
challenges. If there are fewer than 2M challenges then we have unnecessarily
reduced the size of the output response space (making the attackers guessing
task easier).

The Calculation. Without loss of generality we’ll say that each response sym-
bol is produced by a separate calculation function: R(t) = ft(S,Ci). Thus overall

R = [f0(S,Ci)f1(S,Ci)f2(S,Ci) · · · fT−1(S,Ci)].

Each of the ft() represents a calculation the user must perform, using the secret
and the challenge, to produce the response symbol R(t). In general it will involve
fewer than N bits of the secret. This is so, since if each bit of R depends uniformly
at random on each bit of S the user must carry out at least M · (N − 1) binary
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decisions (see Section 4.4). For an 80-bit secret and a 20-bit response, this would
be 1600 binary decisions for a single login. Even if a user could reliably make 2
decisions per second the login would take 13.3 minutes, which is absurd. Thus,
we will assume, in general, that U ≤ N of the bits of S are used in the calculation
ft() of each of the response symbols R(t). The lower U the easier the task for the
user. It is clear that U = N represents an insupportable burden. However, as we
will see in Section 4, making U too small invites a divide-and-conquer attack. U
will play a vital role in the tradeoff between usability and security.

We emphasize that the calculation f(R,Ci) must be simple enough for a user
to perform quickly and accurately. The user must not employ any calculating
devices hosted on the untrusted machine. For example, using even a software
calculator on the untrusted machine (such as the scheme of [12] suggests) would
be unacceptable, since the attacker would have access to the input as well as the
output.

We also rule out using the assistance of a calculator on a cell phone, mp3
player or other device, but for a different reason. If the user has access to a cell
phone it makes more sense to carry a list of one-time passwords than to perform
a challenge response calculation. Our goal is to determine whether a memory
alone challenge response scheme can resist attack.

Example Schemes. The described notation and framework are applicable to
all challenge-response authentication schemes although the mapping function is
different in each scheme. For instance in Weinshall’s scheme [17] briefly described
in Section 2, the shared secret is the set of 30 images selected among 80. Here
the size of the secret is N = log2

(
80
30

) ≈ 73 bits. Ci is the permutation of the 80
images which is currently being displayed on the panel and the mapping function
M is the mental path that the user is supposed to follow. The response R(t) is
the label through which the path drawn by the user exits the panel. Since R(t)
can be either 0,1,2 or 3, it is a k = 2 bit response. Finally, the server requires 11
challenge-response rounds, which makes T = 11.

3.2 Two Trivial Solutions

Hand Over the Bits Unmodified. A trivial solution is to have ft() just select
k bits of the secret. For example, the first time the user logs in she might be
asked to enter the first M bits of the secret S, the second time the next M and
so on. This has the merit of being simple, but this is good for only N/M logins
on the same machine. After that the attacker knows the entire secret and those
bits cannot be re-used. In fact this is equivalent to a one-time password system.
A variant of this is used in [15], since the user gives away bits each time he
indicates an image.

Challenge for Random Bits of Secret. A related alternative is to prompt
the user for specific randomly chosen portions of the secret, which are deliv-
ered unmodified (this is suggested e.g. in [14]). For example, if the secret were
remembered in the form of a 24-digit number the server might challenge for 6
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randomly chosen digits of the secret (thereby giving a 20-bit login). This has
the merit of again being simple, but extending the number of logins that can be
achieved. However the probability that the attacker who has observed n logins
possesses any particular digit is

Pr{Attacker knows digit|W logins} = 1 − (1 − M/N)W .

For example, after 8 logins he knows each digit with 90% probability. At this
point he has a 53% probability of being able to answer any given challenge
successfully. If he gets three attempts before the account is locked he has a
greater than 90% chance of being able to successfully respond to one of the
challenges.

What’s Wrong with These Solutions. It is apparent that in order to with-
stand more than N

M challenge-response rounds, the server should never ask for
the secret bits themselves. For this purpose a carefully designed f() function,
which proves to the server that the user knows the secret without revealing the
secret bits, is required. Such an f() function should be one-way in the first place
so that it should be very hard to determine the input given the output of the
function. Otherwise, the scheme would be equivalent to the case where the user
submits secret bits as the response.

3.3 Attack Model

First we introduce our attack model. We assume that the attacker has installed
spyware on the untrusted machine and observes everything that happens there.
All keystrokes, all mouse-movements, everything that goes on the screen, and
all network traffic is available to the attacker.

Thus, following the general pattern of a challenge response scheme in Figure
6 the attacker will observe both the challenge from the server Ci and the client’s
response R = f(S,Ci). We further assume that the calculating function f() is
public, so that the secret S is the only thing concealed from the attacker. Since
we desire that the user be able to login multiple times we will assume that the
attacker observes a series of W logins and gets the MW -bit stream:

Γ = R0R1R2 · · ·RW−1.

Since he has seen the response the attacker can try as many off-line guesses
at the secret as computation will allow. That is he can calculate

Γ
′
= R

′
0R

′
1R

′
2 · · ·R

′
W−1,

for as many trial secrets S
′

as he wishes. If he finds an S
′

for which Γ
′
= Γ he

has not necessarily found S. For example, after a single login (i.e. W = 1) there
would be 2N−M secrets that produce the same response as S. However as the
number of observed logins increases collisions decrease rapidly. When MW > N,
i.e. the total number of observed bits is greater than the secret size, collisions
are negligible and we do not consider them further.
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We Cannot Conceal How Many Bits are Used. Recall, from Section 3.1
that the number of bits of the secret U involved in each output bit is an important
parameter. This cannot be concealed from the attacker. We can measure the
effective number of bits used by a given scheme as follows. Choose two secrets S
and S

′
which differ by one bit. Generate A randomly chosen challenges and count

the number, B, for which the two secrets produce different responses. Thus the
measured fraction of responses where the two secrets produce the same response
is (A − B)/A. We have already seen (in the case of k-bit symbols) that the
expected value is 1 − U/N · (1 − 1/2k). Thus if we compare the expected and
actual values we can estimate U as

U =
NB

A
· 1
1 − 1/2k

. (1)

Of course A and B should be large enough to generate a stable estimate of the
actual fraction of responses that remain unchanged. We can use this to estimate
the effective number of bits used, for example in the Weinshall [17] scheme, where
we find Ueff ≈ 7.8. We will see that this is the fatal weakness, not just of this
scheme, but of any scheme which does not make absurd calculating requirements
of the user.

4 A Brute Force Attack

We now show how secret can be identified within a reasonable time when the
number of bits, U, used to calculate an output symbol is small. The weakness is
that when U � N similar secrets produce similar responses. The outline of the
attack is as follows:

– When secrets are close the responses are close
– It’s easy to find a secret that’s close
– Once close, it’s easy to get closer.

Taken together this gives that the only escape from brute-force attack is to make
U large. But we show in Section 4.4 that this forces the burden of calculation
on the user to be infeasible.

4.1 When Secrets Are Close the Responses Are Close

First suppose that S is the user’s secret and S
′
is an unrelated secret chosen at

random. We expect that the probability that two symbols from their respective
responses to Ci are the same is Pr{R(t) = R(t)

′} = 1/2k. This merely says that
all response symbols are equally likely and, for unrelated secrets, the response
symbols coincide at random. However, when S and S′ are close and U � N this
is no longer true: suppose they differ by e bits i.e. |S− S

′ | = e. Now, since only
a U -bit portion of the N -bit secret is used to calculate each response symbol
this portion might include none of the different bits. For example, if S and S

′
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differed in only a single position (i.e. e = 1) we would have R(t) = R
′
(t) unless

that single bit was one of the U bits used in this calculation.
In general the probability that none of the e bits where S and S′ differ are

included in any of the U bits used to calculate R(t) is:

N − e

N

N − 1 − e

N − 1
· · · N − (U − 1) − e

N − (U − 1)
=

⎛

⎝
U−1∏

j=0

N − j − e

N − j

⎞

⎠ .

When this occurs R(t) = R
′
(t). Otherwise the responses might still be the same

with probability 1
2k . Hence the probability of having R(t) = R

′
(t) given that

|S− S′| = e, can be written as:

pe =

⎛

⎝
U−1∏

j=0

N − j − e

N − j

⎞

⎠+

⎛

⎝1 −
⎛

⎝
U−1∏

j=0

N − j − e

N − j

⎞

⎠

⎞

⎠
/
2k . (2)

We graph this in Figure 1. As e decreases (i.e. S and S
′
get closer) pe deviates

from 1
2k and gets closer to 1 as shown. When e is very small the probability that

R(t) = R
′
(t) is almost 1. This is important since it says that the probability

that the response symbols are equal increases as the distance between the secrets
decreases.

Now let’s examine the consequences for the attacker who gathers TW response
symbols from the W observed login events. Define Simm(Γ,Γ

′
) as the number of

symbol positions in which the two response streams agree; this ranges between 0
and TW. Now, Pr{Simm(Γ,Γ

′
) = d} is binomially distributed with probability

pe given in (2):

Pr{Simm(Γ,Γ
′
) = d | |S− S

′ | = e} = Bpdf (d, TW, pe).

In Figure 2 (a) we show how this is influenced by distance (for N = 80, U =
10, k = 2 and W = 10 logins) by showing the distributions for e = 12 and
e = 40. Observe that the mean of Simm(Γ,Γ

′
) for secrets that are distance

40 from S is TWp40 = 100 × 0.25 = 25 while for secrets at distance 12 it is
TWp12 = 100 × 0.413 = 41.3. Also observe that for a given scheme (i.e. N, U
and k fixed) the separation increases with the number of logins observed. Figure
2 (b) we show the same scheme as in (a), but now with W = 20 logins. Clearly
it gets easier to tell secrets that are close to S from those that are far when
the attacker observes more logins. Thus the attacker is always assisted by more
observations: the more logins he observes the greater the separation between the
binomials and the more reliably he can distinguish secrets that are close from
secrets that are far from the true secret.

We emphasize that when Simm(Γ,Γ
′
) is large it does not imply that |S−S

′ |
is small, but it does mean that the probability is higher. Thus, among a large
enough collection of secrets it is possible to distinguish in probability those that
are close to the true secret from those that are far.
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U = 10 and k = 2. Observe that when secrets are close (i.e. e small) the probability of
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Fig. 2. Secrets that are close produce responses that are close. The expected number
of positions where the responses are the same for depends on distance from the true
secret. Using N = 80, U = 10 and k = 2 and secrets that are 40 and 12 bits from the
true secret. (a) TW = 100 (i.e. 10 logins each with 10 2-bit symbols). (a) TW = 200
(i.e. 20 logins each with 10 2-bit symbols).

4.2 It’s Easy to Find a Secret That’s Close

If the attacker has a large collection of candidate secrets he now has a good
strategy to tell secrets that are close from secrets that are far. By selecting only
those points for which

Simm(Γ,Γ
′
) ≥ Threshold (3)

we can remove from consideration those that are likely to be far away. For
example, in Figure 2, if we threshold at TWp12, i.e. the mean of the p12 binomial,
we include a fraction 1−Bcdf(TWp12, TW, p12) = 0.5 of secrets that are distance
12 from S and only 1−Bcdf(TWP12, TW, p40) = 0.0065 of those that are distance
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Fig. 3. Figuring out which of your neighbors take you closer to/away from the true
secret. The graph shows that even the binomial pdfs with probabilities pe+1 and pe−1

are separated when e is small enough. The scheme shown is for N = 73, U = 8.8, k = 2
with 10 logins.

40. Thus, at a threshold of TWp12 the vast majority of distance-40 points are
discarded, while only 0.50 of distance-12 points are. Of course there are many
more secrets at distance 40 than at distance 12, i.e.

(
N
40

) � (
N
12

)
. But if the

attacker starts with a large enough collection of candidate secrets S
′

he can
quickly trim the collection to include only those that have a higher probability
of being close. Of the 2N total secrets in the space the number of points that
satisfy (3) (i.e. have response streams that are close to that produced by the
true secret) is given by summing the tails of the binomials multiplied by the
number of points:

N∑

k=0

(
N

k

)
· (1 − Bcdf (Threshold, TW, pk)).

A total of
(
N
e

)
secrets will live within an e-ball of the user’s secret. Thus we

should expect that if the attacker selected

2N

/(
N

e

)

secrets at random, at least one would be a distance e from the user’s secret S.
Of these we expect a fraction

∑N
k=0

(
N
k

) · (1 − Bcdf (Threshold, TW, pk))
2N

to satisfy (3).
For simplicity, let’s choose Threshold = TWpe so the attacker retains 50 % of

the points that are a distance e from the true secret. Thus for a cost of 2N/
(
N
e

)

response evaluations the attacker will end up with
(

N∑

k=0

(
N

k

)
· (1 − Bcdf (TWpe, TW, pk))

)/(
N

e

)
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secrets with a 50 % probability that one of them is a distance e from the true
secret. Every doubling the number of points examined reduces the probability
that he misses the true secret by a factor of 2. Taking 2N+Q/

(
N
e

)
evaluations

improves the chances that includes at least one point within distance e of the
true secret to 1 − (1 − 0.5)Q.

4.3 Once Close, It’s Easy to Get Closer

Suppose we have S
′

such that |S − S
′ | = e, where e is small. How do we now

find S? First consider the N secrets that are distance 1 from S
′
, i.e. consider S

′′

such that |S′ − S
′′ | = 1. For e of these we will have

|S− S
′′ | = e − 1,

and for the remaining N − e we have

|S− S
′′ | = e + 1.

That is, each distance-1 neighbor of S
′
is either a distance-(e− 1) or a distance-

(e + 1) neighbor of the true secret S.
Of course the attacker doesn’t know which N−e of the N neighbors are closer,

and which e are further away. But he does know that the responses Γ
′
that are

closest to Γ are more likely to come from the distance-(e− 1) neighbors. This is
made explicit in Figure 3 where we plot

Pr{Simm(Γ,Γ
′
) = d | |S − S

′′ | = e + 1} = Bpdf (d, TW, pe+1)

and
Pr{Simm(Γ,Γ

′
) = d | |S − S

′′ | = e − 1} = Bpdf (d, TW, pe−1)

for the scheme as in Figure 2 (i.e. N = 80, U = 10 and k = 2) and e = 12. Thus,
while the tails of the binomials overlap, it is more likely, for example, that if
Simm(Γ,Γ

′
) ≥ 95 that S

′
is a distance-(e − 1) neighbor of S.

Suppose S
′
is a distance-e neighbor of S. Now, if the attacker retains (among

the N distance-1 neighbors of S
′
) the three that maximize Simm(Γ,Γ

′′
) it is

overwhelmingly probable that he retains at least one distance-(e − 1) neighbor
of S. We quantify this in Figure 4 which shows the probability of one of the e
secrets that are closer to S being among the three that maximize Simm(Γ,Γ

′′
).

As can be seen for small enough e the attacker is almost guaranteed to have
at least one point that is closer among the top three. For example, using the
W = 20 login plot of Figure 4 if |S−S

′ | = 17 and we choose the three distance-1
neighbors of S

′
that have responses closest to Γ the probability is 0.997 that

one of them is closer to the true secret (i.e. for one of them S
′′ |S − S

′′ | = 16).
Thus given a secret that is close, the attacker has a high probability of getting
one point (among three) that is closer still. Since, this probability increases as
e decreases, the closer he gets the easier it gets. Now the attacker need merely
iterate.
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At worst, this would give the attacker 3e points to consider before finding
the secret, which is of course a huge improvement over

(
N
e

)
. In fact we can do

better; rather than retain 3m points for each m = 0, 1, · · · e we retain only the
10 points that maximize Simm(Γ,Γ

′′
). Figure 5 shows the probability that this

simplification finds the correct secret as a function of e. To calculate this curve we
measured the number of times that, starting at S

′
, this algorithm found it’s way

to S given that |S − S
′ | = e. This was done numerically, by generating random

N -bit secrets, and challenges that use a randomly chosen U bits of the secret.
The k-bit symbols were generated uniformly at random from the U challenge
bits, and we repeat TW times to simulate a stream of W logins. As can be seen
the attacker can find his way “home” by, starting at S

′
, retaining the 10 secrets

that maximize Simm(Γ,Γ
′′
).

4.4 Putting the Pieces Together

We put the pieces of the above analysis together to form a generic brute-force
attack to reveal the user’s secret S given the observation from W logins Γ.
Essentially the attacker chooses enough brute force points to ensure that several
of them are close and applies the test of (3) to retain only those that are probably
close. On all of the retained points he attempts to iterate and get closer. Those
points that actually are close will converge to the true secret. This leads to the
following algorithm.

– foreach(2N+Q/
(
N
e

)
random secrets S

′
){

– for (m = 0, 1, · · · , e − 1){
– Calculate Simm(ΓΓ

′′
) of the distance-1 neighbors of each element in list

– Retain the 10 secrets that maximize Simm(Γ,Γ
′′
).

– if (Simm(Γ,Γ
′′
) = TW for any list secret) break }}

Since we keep 10 secrets in the list, and each secret has N distance-1 neighbors
this algorithm requires 10Ne evaluations.

Our fundamental unit of complexity is an evaluation of Γ
′

for a given secret
S

′
. The overall complexity is the cost of the brute-force search plus the cost of

finding the true secret from the points that survive the threshold test:
(

2N + 10 · N · e ·
N∑

k=0

(
N

k

)
· (1 − Bcdf (TWpe, TW, pk))

)/(
N

e

)
. (4)

The complexity is inversely related to e. The brute-force (left-hand) term dom-
inates for small e. For example, if e = N/2 even a small collection of randomly
chosen secrets will contain one e-neighbor, while if e = 1 we must include almost
the whole secret space.

Choosing the largest possible e for a given scheme will minimize the attacker’s
complexity. Of course, the attacker must limit his choice of e to those that allow
reliable zooming in on the true secret once a distance-e neighbor has been found.
For example, in the scheme shown in Figure 5 at e = 17 the attacker is almost
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Fig. 4. Given a secret S
′

that is distance e from the true secret S how easy is it to get
closer still? The graph shows the probability that the attacker finds a secret distance
e− 1 from S if he chooses the three distance-1 neighbors of S

′
that produce responses

most like the observed response. The scheme shown is for N = 73, U = 8.8, k = 2 with
10 and 20 logins (left and right resp).

Fig. 5. Given a secret S
′

that is distance e from the true secret S how easy is it to
get closer still? The graph shows the probability that by retaining the 10 points that
maximize Simm(Γ,Γ

′′
) and iterating that we find our way from S

′
to the true secret.

This reduces the complexity from 3e to 10 · N · e points that must be searched. The
scheme shown is for N = 73, U = 8.8, k = 2 with 10 logins.

guaranteed to successively find secrets that are 16, 15, · · ·2, 1 from the true secret,
while at e = 35 this is extremely unlikely to happen.

We evaluate numerically the largest e that gives the algorithm of Section 4.3 a
0.975 probability of converging to the true secret from a distance e. The results
are tabulated in Table 1. As can be seen when U = 5 the attacker can start quite
far away (i.e. e large) and still find the secret, while for U = 10 he must start a
great deal closer. The table also makes clear that the more logins the attackers
observes the easier his task gets (i.e. as W increases so also does the value of e
from which he can reliably expect to find the secret).
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Table 1. The largest value of distance e to have the algorithm of Section 4.3 find
the true secret with probability 0.975. We evaluate this for U = 5 (left) and U = 10
(right). Clearly, the more logins W the attacker observes the easier fidning the true
secret becomes. Also, for small U almost any starting point will allows convergence
to S

′
. But even at U = 4 a human will require at least 60 seconds to calculate the

response to a challenge.

W N = 50 N = 60 N = 70 N = 80

10 19 21 26 39

15 20 29 33 39

20 23 29 34 39

25 24 29 34 39

W N = 50 N = 60 N = 70 N = 80

10 10 11 15 16

15 11 14 16 17

20 13 15 17 18

25 14 16 18 20

Complexity of the User’s Task. In Section 4.1 we showed that secrets that
are close produce responses that are close. We used the fact that if none of the
e bits where S and S

′
differ is among the U bits used to calculate a particu-

lar output symbol then the two secrets produce the same output symbol R(t).
However, if any of the e bits where they differ was involved we assumed that all
outputs were equally likely. So the output would be the same with probability
1/2k. Thus, for secrets that differ from S in any of the U bits used to calculate
R(t) the output symbol R

′
(t) has a uniform random distribution. This implies

that each of the k bits of the output symbol depends on all U input bits, but
is independent of the other k − 1 output bits. Hence at least k(U − 1) binary
decisions must be performed to calculate this symbol. This is in fact a loose
lower bound, but tells us that the user must perform at least M(U − 1) binary
decisions per login.

If the output symbol does not change uniformly at random based on the U
input bits things only get better for the attacker. Suppose that only one bit where
S an S

′
differ is used among the U that are used to calculate R(t). Now if the

probability that the symbol is unchanged is higher than a uniform assignment
it merely serves to make the attacker’s task easier, and the algorithm of Section
4.4 work better. Previously the attacker could infer closeness only when none of
the e differing bits were involved. But now, when only one bit is involved the
probability that R(t) = R

′
(t) is higher than when e bits are involved. Thus the

probability that |S − S
′ | is small when

What is Needed to Resist Brute-Force? Since M(U − 1) is lower bound on
the number of binary decisions the user must perform, we can decide the maximum
permissible U for a given burden on the user. Unfortunately this is extremely low.
If we assume the user can perform a single binary decision per second then, if a
one minute login procedure is acceptable (i.e. it would take the user this time to
respond to the challenge) then we have U = 60/20 + 1 = 4. Even this assumes
that the user can reliably perform 60 binary decisions without error. Of course we
cannot reduce M = 20, since we require a minimum of a 20-bit login.

We summarize the cost of brute-forcing a U = 5 scheme in Table 2. For each
secret size N , and number of observed logins W we take the value of e from
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Table 2. Time in minutes to brute-force a Challenge Response scheme for a given
secret size and number of logins observed when U = 5 bits of the secret are involved
in each output bit. This requires at least 80 binary decisions be made by the user, and
a more than one minute login procedure.

W N = 50 N = 60 N = 70 N = 80

10 9.9 24 16 58

15 10.5 15.9 23 32

20 12.2 20.5 30.2 42

25 17.5 27.8 41.4 57

Table 1 and calculate the complexity from (4). We assume that the attacker can
perform 1000 evaluations per second for the N = 50, U = 5, k = 2 case when
he has observed W = 10 logins. The costs are given in hours to have a 0.9375
probability of finding the secret.

We summarize the cost of brute-forcing such a scheme in Table 2. The costs
are given in hours required to have a 0.9375 probability of finding the true secret
using our brute force method. That is, by choosing the largest value of e for a
given scheme we calculated the number of trials required using (4). We assumed
estimated that 10000 trials per second could be performed. The table makes
clear the necessity of using large secrets. We regard it as infeasible to expect
the user to perform more than 60 binary decisions for a login, and thus secrets
larger than N = 80 (i.e. the equivalent of a 24 digit PIN) must be used.

5 Conclusion

We have examined the question of whether “Something You Know” can be saved
as the sole factor for authenticating a user in the presence of spyware. Our con-
clusion is negative. We find that in a challenge response scheme the number of
bits U of the secret involved in each bit of the response is the key parameter
to surviving brute force. Unfortunately the amount of binary decisions the user
must perform increases at least linearly with this parameter. This gives a fun-
damental tradeoff for which there appear to be no good choices. The Weinshall
scheme [17], which used about 7.8 bits of the secret per output bit required
about 3 minutes for the user to respond to the challenge. If we try to limit the
login to a one minute login procedure we find that given enough observed logins
the scheme is quickly brute-forced. This is true independent of the details of the
scheme.

Golle and Wagner [7] conclude that “something you know” schemes be tested
with SatSolver. We would add that measuring the number of bits of the secret
involved in each output bit is paramount. Unless U can be made large, brute-
forcing is trivial. This suggests that good alternatives between passwords, which
do withstand replay, and one-time password or two-factor schemes ar very hard
to find.
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2. Herley, C., Florêncio, D.: How To Login From an Internet Café without Worrying
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A Breaking the Virtual Passwords Scheme of Lin et al. [12]

The recently suggested Virtual Passwords scheme of Lei et al. [12] unfortunately
appears to fall to the divide-and-conquer attack described above. In that work,
user secret is an n-digit PIN, such that S = S0S1...Sn−1 where Si ∈ {0, 1, .., 9}.
For each login, server presents an n-digit challenge such that C = C0C1...Cn−1

where Ci ∈ {0, 1, .., 9}. The response calculation function is defined as follows:

R(t) =
{

(aS0 + C0 + S1 + b) mod Z i = 0
(aR(t − 1) + Ci + Si + b + Si+1) mod Z i = 1, 2, .., n− 1 (5)

where a and b are two other random numbers that user has to remember and a
is relatively prime to Z in order to make the response function bijective.

In general, since R and C are observable by the attacker, the only unknown
parameters for each response R(t), are a, b, Si and Si+1. For the sake of usability,
the response for each login is also an n-digit number , such that R(t) ∈ {0, 1, .., 9}.
Therefore one has to set Z = 10, which also implies that a ∈ {1, 3, 7, 9} due
to relatively prime constraint. On the other hand, regardless of the actual b
value, without loss of generality we can consider that b ∈ {0, 1, .., 9} due to the
properties of modular arithmetic. Therefore for each R(t), attacker has to try
4×10×10×10 = 4000 different combinations of the parameters a, b, Si and Si+1

to see which combination matches the observed response R(t). After one login,
the attacker is left only with 4000/10 = 400 combinations as R(t) can be only
one of the 10 possible values. Similarly after second and third login, the attacker
will have only 40 and 4 possible choices respectively. And finally, the attacker
will get the true parameter combination after observing the fourth login.

In summary, in the worst case attacker reveals S, a and b after observing four
login sessions at a cost of n(4000+ 400+ 40 + 4) trials. However, in fact she can
do much better both in terms of the number of logins observed and the number
of trials, since the same a and b is used for every R(t) and a single S(i) is used
for multiple R(t)s.

B Explanatory Tables

Password Authentication
Client → Server: U,P

OTP Authentication
Client → Server: U,Pi

Challenge Response Authentication
Client → Server: U
Client ← Server: Ci

Client → Server: f(S, Ci)

Fig. 6. The basic types of access control discussed: password, one-time password and
challenge response
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S N-bit secret shared by client and server

R M -bit client response for a single login

R(t) k-bit symbol of the response (R = R(0)R(1) · · ·R(T − 1))

f() calculation performed by the user

ft() R(t) = ft(S,Ci)

Γ Observed series of W logins (Γ = R0R1 · · ·RW−1)

U # bits of S used to calculate each R(t)

Bpdf (d, n, p) Binomial pdf for n trials with probability p.

Bcdf (d, n, p) Binomial cdf for n trials with probability p.

Fig. 7. Summary of notation and symbols used
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