
An Administrator’s Guide to Internet Password Research∗

Dinei Florêncio and Cormac Herley
Microsoft Research, Redmond, USA

Paul C. van Oorschot
Carleton University, Ottawa, Canada

Abstract. The research literature on passwords is rich
but little of it directly aids those charged with securing
web-facing services or setting policies. With a view to
improving this situation we examine questions of im-
plementation choices, policy and administration using a
combination of literature survey and first-principles rea-
soning to identify what works, what does not work, and
what remains unknown. Some of our results are surpris-
ing. We find that offline attacks, the justification for great
demands of user effort, occur in much more limited cir-
cumstances than is generally believed (and in only a mi-
nority of recently-reported breaches). We find that an
enormous gap exists between the effort needed to with-
stand online and offline attacks, with probable safety
occurring when a password can survive 106 and 1014

guesses respectively. In this gap, eight orders of mag-
nitude wide, there is little return on user effort: exceed-
ing the online threshold but falling short of the offline
one represents wasted effort. We find that guessing re-
sistance above the online threshold is also wasted at sites
that store passwords in plaintext or reversibly encrypted:
there is no attack scenario where the extra effort protects
the account.

1 Introduction

Despite the ubiquity of password-protected web sites, re-
search guidance on the subject of running them is slight.
Much of the password literature has become specialized,
fragmented, or theoretical, and in places confusing and
contradictory. Those who administer and set policies can
hardly be blamed for being unenthusiastic about publi-
cations which document constantly improving attacks on
password sites but are largely silent on the question of
how they can be defended. Disappointingly little of the
accumulating volume of password research directly ad-
dresses key everyday issues—what to do to protect web-

∗Proceedings of USENIX LISA’14, Nov. 9-14, 2014, Seattle, WA.

services, given the realities of finite-resources, imperfect
understanding of the threats, and considerable pushback
from users.

Do password composition policies work? Does forced
password expiration improve security? Do lockouts help
protect a service? What do password meters accomplish?
The most comprehensive document on these and other
questions dates to 1985 [13]. The problem is not that no
recent guidance is available; OWASP offers several doc-
uments [39, 45, 56]; blogs, trade magazines and industry
analyst reports are full of tips, best practices and opin-
ions. Discussions in online fora reliably generate pas-
sionate arguments, if little progress. However, much of
the available guidance lacks supporting evidence.

We seek to establish what is supported by clear ev-
idence and solid justification. Using a combination of
literature survey and ground-up, first-principles reason-
ing, we identify what is known to work, what is known
not to work, and what remains unknown. The end goal
is a more useful view of what is known about the imple-
mentation, effectiveness, and impacts of choices made
in deploying password-related mechanisms for access
to services over the web. The target audience is those
interested in the intersection of research literature, and
the operation, administration and setting of policies for
password-protected web-sites.

On the positive side, considerable progress in the last
few years has followed from analysis of leaked plaintext
datasets. This has provided new evidence challenging
many long-held beliefs. Most current password practices
reflect historical origins [18]. Some have evolved over
time; others should have, but have not. Environments of
use, platforms, and user bases have changed immensely.
We summarize the literature useful to answer practical
questions on the efficacy of policies governing password
composition, expiration and account locking.

Some of our findings are surprising. Experts now
recognize that traditional measures of strength bear lit-
tle relation to how passwords withstand guessing, and

1

can no longer be considered useful; current password
policies have not reflected this. We characterize cir-
cumstances allowing advanced offline guessing attacks
to occur, and find them more limited than is generally
realized. We identify an enormous gap between the
guessing-resistance needed to withstand online and of-
fline attacks, and note that it is growing. We high-
light that strength above that needed to withstand online
guessing is effectively wasted at sites that store pass-
words in plaintext or reversibly encrypted: there is no
attack scenario where the extra strength protects the ac-
count from an intelligent adversary.

To dispense with a preliminary question: despite long-
known shortcomings in both security and usability, pass-
words are highly unlikely to disappear. The many rea-
sons include the difficulty of finding something bet-
ter, user familiarity as an authentication front-end (pass-
words will likely persist as one factor within multi-
dimensional frameworks), and the inertia of ubiquitous
deployment [9, 30]. Thus the challenges of administer-
ing passwords will not fade quietly either, to the disap-
pointment of those hoping that a replacement technology
will remove the need to address hard issues.

2 Classifying accounts into categories

A common tactic to allegedly improve the security of
password-protected sites is to ask users to expend more
effort—choose “stronger” passwords, don’t re-use pass-
words across sites, deploy and administer anti-malware
tools, ensure all software on user devices is patched up-
to-date, and so on.

If we assume that users have a fixed time-effort budget
for “password security” [4], then it is unwise to spend
equally on all accounts: some are far more important
than others, correspondingly implying greater impact
upon account compromise. This motivates determining
how to categorize accounts—a subject of surprisingly lit-
tle focus in the literature. Different categories call for
different levels of (password and other) security. Those
who decide and administer policies should be aware of
what category not only they see their site falling into, but
what categories subsets of their users would see it falling
into. Note also that some password-protected sites pro-
vide no direct security benefit to end-users, e.g., services
used to collect data, or which compel email-address user-
names to later contact users for marketing-related pur-
poses. Thus views on account and password importance
may differ between users and systems administrators or
site operators (e.g., see [10]).1

Criteria for categorizing accounts: A first attempt to

1Realistic systems administrators might self-categorize their site,
asking: Do users see me as a “bugmenot.com” site? (cf. Table 1)

categorize password-based accounts might be based on
communication technology—e.g., grouping email pass-
words as one category. We find this unsuitable to our
goals, as some email accounts are throw-aways from a
“consequences” point of view, while others are critically
important. Accounts may be categorized in many ways,
based on different criteria. Our categorization (below) is
based largely on potential consequences of account com-
promise, which we expect to be important characteristics
in any such categorization:

• (personal) time loss/inconvenience

• (personal) privacy

• (personal) physical security

• (personal/business) financial implications

• (personal/business) reputational damage

• (personal/business) legal implications

• confidentiality of third-party data

• damage to resources (physical or electronic)

The above time loss/inconvenience may result from loss
of invested effort or accumulated information, such as
contact lists in email or social networking accounts. One
lens to view this through is to ask: Would a user invest 10
minutes in trying to recover a lost account, or simply cre-
ate a new such account from scratch? Another account-
differentiating question is: Do users make any effort at
all to remember the account password? Note also that
the consequences of compromise of an account X may
extend to accounts Y and Z (e.g., due to password re-
use, email-based password recovery for other accounts,
accounts used as single-sign-on gateways).

For use in what follows, and of independent interest,
we categorize accounts as follows:

• don’t-care accounts (unlocked doors).

• low-consequence accounts (latched garden doors).

• medium-consequence accounts.

• high-consequence accounts (essential/critical).

• ultra-sensitive accounts (beyond passwords).

Details and examples of these categories are given in Ta-
ble 1; we say little more in this paper about the book-
end categories in this spectrum: don’t-care accounts are
suitably named, and ultra-sensitive accounts are beyond
scope. Within this paper, that leaves us to explore what
password policies, user advice, implementation details,
and security levels are suitable for accounts in three main

2

Category of account Description Comments
0: Don’t-care Accounts whose compromise has

no impact on users. A compromise
of the account at any time would
not bother users. Often one-use
accounts with trivially weak pass-
words, or recreated from scratch
if needed subsequently. Perhaps
the site compels passwords, despite
user not seeing any value therein.

The security community and users should recognize that for such
accounts, there would be no technical objection to using password
password, knowing that it provides no security. Such accounts should
be isolated from other categories to avoid cross-contamination, e.g.,
due to password re-use. Users should minimize security-related invest-
ments of time and effort—resources are better spent elsewhere. Possible
strategies: re-using a single weak password for all such accounts, using
distinct passwords written down on one sheet for easy access, and using
publicly shared passwords (see: bugmenot.com).

Generic examples: One-time email accounts (e.g., used for one-off signup, then abandoned). Nuisance
accounts for access to “free” news articles or other content.

1: Low-consequence Accounts whose compromise has
non-severe implications (minimal
or easily repaired). Often infre-
quently used accounts, relatively
low-impact if compromised.

Administrators and operators should be realistic in expectations of user
commitment to such accounts. Some users may rely almost entirely
on a password recovery feature, vs. remembering such account pass-
words. Users should recognize the place of these between Don’t-care
and Medium-consequence accounts.

Generic examples: Social network accounts (infrequent users). Discussion group accounts (infrequent
users). Online newspapers, streaming media accounts (credit card details not stored onsite).

2: Medium-consequence Non-trivial consequences but lim-
ited, e.g., loss of little-used reputa-
tion account, or credit card details
stored at online U.S. merchant (di-
rect financial losses limited to $50).

User losses are more in time and effort, than large financial loss or con-
fidentiality breached by document or data loss. User effort directed
towards resisting online guessing attacks is well-spent. Unclear if the
same holds true re: resisting determined offline guessing attacks. Note:
many attack vectors are beyond user control (e.g., browser-based flaws,
server compromises).

Generic examples: Email accounts (secondary). Online shopping sites (credit card details stored onsite).
Social network accounts (casual users). Voice or text communication services accounts (e.g., Skype, MSN).
Charge-up sites for stored value cards (credit card details stored onsite). Human resources sites giving
employees semi-public information.

3: High-consequence Critical or essential accounts re-
lated to primary employment, fi-
nance, or documents requiring high
confidentiality. Compromises are
not easily repaired or have major
consequences/side effects.

Most important password discussion, attention and effort of both sysad-
mins and users should focus here. Often password protection for such
accounts is best augmented by second-factor mechanisms (involving ex-
plicit user action) or other dimensions (invisible to user). Stakeholder
priorities may differ: an account viewed lower consequence by a user
may be categorized essential by their employer (e.g., remote access to a
corporate database via a password).

Generic examples: Email accounts (primary, professional, recovery of other accounts). Major social net-
work/reputational accounts (heavy users and celebrities). Online banking and financial accounts. SSH
and VPN passwords for access to corporate networks. Access to corporate databases, including employee
personal details.

∞: Ultra-sensitive Account compromise may cause
major, life-altering, irreversible
damage. (Many individual users
will have no such accounts.)

It is entirely unsuitable to rely on passwords alone for securing such
accounts Passwords if used should be augmented by (possibly multi-
ple) additional mechanisms. The passwords themselves should not be
expected to be tangibly different from those for high-consequence ac-
counts (one might argue that weaker passwords suffice, given stronger
supplementary authentication mechanisms).

Generic examples: Multi-million dollar irreversible banking transactions. Authorization to launch military
weapons. Encryption of nation-state secrets.

Table 1: Categories of password-protected accounts, comments and examples. Accounts in the same category ideally
have passwords of similar strength relative to guessing attacks. Ultra-sensitive accounts require that passwords be
augmented by much more robust mechanisms.

3

categories of interest: low-consequence, medium conse-
quence, and high-consequence accounts.2

Use of single term “password” over-loaded? Our
discussion of categories highlights that using the unqual-
ified term password for protection that runs the gamut
from don’t-care to high-consequence sites may mislead
users. We should not be quick to express outrage on
learning that password1 and 123456 are common
on publicly-disclosed password lists from compromised
sites, if these are don’t-care accounts in users’ eyes. Nor
should it be surprising to find passwords stored cleartext
on fantasy football sites. The use of the same term pass-
word across all account categories, together with a jum-
ble of unscoped password advice to users, and an absence
of discussion of different categories of accounts (and cor-
responding password requirements), likely contributes to
lower overall security, including through cross-category
re-use of passwords. We believe finer-grained terminol-
ogy would better serve users here.

3 Guessing attacks and password storage

The enormous effort that has been spent on password
strength and guessing-attacks might lead us to believe
that the questions there are largely settled and things are
well-understood. Unfortunately, we find that this is not
the case. For a number of reasons, realistic studies of
password behaviors are hard to conduct [21].

Until recently, published knowledge on in-the-wild
password habits [7, 10, 57] was derived from a few
small-scale sets of plaintext passwords [38], or stud-
ies without access to plaintext passwords [22]. Re-
cent large-scale breaches have provided significant col-
lections of plaintext passwords, allowing study of ac-
tual user choices. Tellingly, they reveal that many time-
honored assumptions are false. Password “strength”
measures both long-used by academics and deeply em-
bedded in criteria used by IT security auditors, are now
known to correlate poorly with guessing resistance; poli-
cies currently enforced push users toward predictable
strategies rather than randomness—e.g., evidence, as dis-
cussed below, shows password aging (forced expiration)
achieves very little of its hoped-for improvement [63].

Here we explore what is known on measuring pass-
word strength, fundamentals of storing passwords, and
suitable target thresholds for how many guesses a pass-
word should withstand.

Leaked datasets. Table 2 lists several recent leaks
from prominent web-sites. These datasets reveal much
about user password habits. The ethics of doing analysis

2An alternate account categorization by Grosse and Upadhyay [28],
based on value, has categories: throw-away, routine, spokesperson,
sensitive and very-high-value transactions.

on what is, in effect, stolen property generated some dis-
cussion when the Rockyou dataset became available in
2009. While none of the 32 million users gave permis-
sion for their passwords to be used, rough consensus now
appears to be that use of these datasets imposes little or
no additional harm, and their use to improve password
security is acceptable; the datasets are also of course
available to attackers.

Note that among Table 2 incidents, passwords were
stored “properly” (see Section 3.4) salted and hashed in
just two cases—Evernote and Gawker. Rockyou, Tianya
and Cupid Media stored plaintext passwords; LinkedIn
and eHarmony stored them hashed but unsalted; Adobe
stored them reversibly encrypted. Section 3.2 and Fig-
ure 1 explain why offline guessing attacks (beyond rain-
bow table lookups) are a relevant threat only when the
password file is properly salted and hashed.

3.1 Password strength: ideal vs. actual

Security analysis and evaluation would be much simpler
if users chose passwords as random collections of char-
acters. For example, if passwords were constrained to
be L characters long, and drawn from an alphabet of C
characters, then each of CL passwords would be equally
likely. An attacker would have no better strategy than
to guess at random and would have probability C−L of
being correct on each guess. Even with relatively mod-
est choices for L and C we can reduce the probability
of success (per password guess) to 10−16 or so—putting
it beyond reach of a year’s worth of effort at 10 million
guess verifications per second.

Unfortunately, the reality is nowhere close to this.
Datasets such as the 32 million plaintext Rockyou pass-
words [64] have revealed that user behavior still forms
obvious clusters three decades after attention was first
drawn to the problem [38]. Left to themselves users
choose common words (e.g., password, monkey,
princess), proper nouns (e.g., julie, snoopy),
and predictable sequences (e.g., abcdefg, asdfgh,
123456; the latter by about 1% of Rockyou accounts).

This has greatly complicated the task of estimating
passwords’ resistance to guessing. Simple estimation
techniques work well for the ideal case of random collec-
tions of characters, but are completely unsuited for user-
chosen passwords. For example, a misguided approach
models the “entropy” of the password as log2 C

L =
L · log2 C where L is the length, and C is the size
of the alphabet from which the characters are drawn
(e.g., lowercase only would have C = 26, lowercase
and digits would have C = 36, lower-, uppercase and
digits would have C = 62 etc). The problems with
this approach becomes obvious when we factor in user
behavior: P@ssw0rd occurs 218 times in the Rock-

4

Site Year # Accounts Hashed Salted
Reversibly
Encrypted

Offline guessing attack
beyond rainbow tables
needed and possible

Rockyou [64] 2009 32m N
Gawker 2010 1.3m X X Y
Tianya 2011 35m N
eHarmony 2012 1.5m X N
LinkedIn 2012 6.5m X N
Evernote 2013 50m X X Y
Adobe 2013 150m X N
Cupid Media 2013 42m N

Table 2: Recent incidents of leaked password data files. For only two listed incidents (Evernote and Gawker) would an offline guessing attack
be the simplest plausible way to exploit the leak. For each other incident, passwords were stored in such a way that either an easier attack would
suffice, or offline guessing was impossible, as explained in Figure 1.

you dataset but has a score of 52.6 under this measure,
while gunpyo occurs only once and has score 28.2.
Thus, a password that is far more common (thus more
likely to be guessed) scores much higher than one that is
unique—the opposite of what a useful metric would de-
liver. These are by no means exceptions; a test of how
passwords hold up to guessing attacks using the John-
theRipper cracking tool [44] shows that L · log2 C corre-
lates very poorly with guessing resistance [32, 60]. Sim-
ilarly for NIST’s crude entropy approximation [13, 60]:
many “high-entropy” passwords by its measure turn out
to be easily guessed, and many scoring lower withstand
attack quite well. Such naive measures dangerously and
unreliably estimate how well passwords can resist attack.

The failure of traditional measures to predict guess-
ability has led researchers to alternatives aiming to more
closely reflect how well passwords withstand attack. One
approach uses a cracking tool to estimate the number of
guesses a password will survive. Tools widely used for
this purpose include JohntheRipper [44], Hashcat, and
its GPU-accelerated sister oclHashcat [42]; others are
based on context-free grammars [60, 61]. These tools
combine “dictionaries” with mangling rules intended to
mimic common user strategies: replacing ‘s’ with ‘$’,
‘a’ with ‘@’, assume a capital first letter and trailing digit
where policy forces uppercase and digits, etc. Thus sim-
ple choices like P@ssw0rd are guessed very quickly.

Another approach models an optimal attacker with
access to the actual password distribution χ (e.g., the
Rockyou dataset), making guesses in likelihood order.
This motivates partial guessing metrics [6] addressing
the question: how much work must an optimal attacker
do to break a fraction α of user accounts?

Bonneau’s α-guesswork gives the expected number
of guesses per-account to achieve a success rate of α
[7]. Optimal guessing gives dramatic improvements in
skewed distributions arising from user-chosen secrets,
but none in uniform distributions. For example, for
the distribution UL6 of random (equi-probable) length-
6 lowercase passwords, all can be found in 266 ≈ 309

million guesses per account, and 10% in 30.9 million
guesses. In contrast, guessing in optimal order on the
Rockyou distribution of 32 million passwords, an aver-
age of only 7, 131 guesses per account breaks 10% of ac-
counts. Thus, successfully guessing 10% of the Rockyou
accounts is a factor of 30, 900, 000/7131 ≈ 4300 easier
than for a length-6 lowercase random distribution (even
though the latter is weaker using the L · log2 C measure).

Thus, oversimplified “entropy-based” measures
should not be relied upon to draw conclusions about
guessing resistance; rather, their use should be strongly
discouraged. The terms password strength and complex-
ity are also confusing, encouraging optimization of such
inappropriate metrics, or inclusion of certain character
classes whether or not they help a password withstand
attack. We will use instead the term guessing resistance
for the attribute that we seek in a password.

3.2 Online and offline guessing
Determining how well a password withstands attack re-
quires some bound on how many guesses the attacker can
make and some estimate of the order in which he makes
them. The most conservative assumption on guessing or-
der is that the attacker knows the actual password dis-
tribution (see α-guesswork above); another approach as-
sumes that he proceeds in the order dictated by an ef-
ficient cracker (see also above). We now review how
the number of guesses an attacker can make depends on
both: (a) the point at which he attacks; and (b) server-
side details of how passwords are stored.

The main points to attack a password are: on the
client, in the network, at a web-server’s public-facing
part, and at the server backend. Attacks at the client
(e.g., malware, phishing) or in the network (e.g., sniff-
ing) do not generally involve guessing—the password is
simply stolen; guess-resistance is irrelevant. Attacks in-
volving guessing are thus at the server’s public-face and
backend.

Attacks on the server’s public-face (generally called
online attacks) are hard to avoid for a public site—by

5

design the server responds to authentication requests,
checking (username, password) pairs, granting access
when they match. An attacker guesses credential pairs
and lets the server to do the checking. Anyone with a
browser can mount basic online guessing attacks on the
publicly facing server—but of course the process is usu-
ally automated using scripts and guessing dictionaries.

Attacks on the backend are harder. Recommended
practice has backends store not passwords but their salted
hashes; recalculating these from user-entered passwords,
the backend avoids storing plaintext passwords. (Sec-
tions 3.4 and 3.5 discuss password storage details.)

For an offline attack to improve an attacker’s lot over
guessing online, three conditions must hold.

i) He must gain access to the system (or a backup) to
get to the stored password file. Since the backend is
designed to respond only one-at-a-time to requests
from the public-facing server, this requires evading
all backend defences. An attacker able to do this,
and export the file of salted-hashes, can test guesses
at the rate his hardware supports.

ii) He must go undetected in gaining password file ac-
cess: if breach detection is timely, then in well-
designed systems the administrator should be able
to force system-wide password resets, greatly lim-
iting attacker time to guess against the file. (Note:
ability to quickly reset passwords requires nontriv-
ial planning and resources which are beyond scope
to discuss.)

iii) The file must be properly both salted and hashed.
Otherwise, an offline attack is either not the best at-
tack, or is not possible (as we explain next).

If the password file is accessed, and the access goes un-
detected, then four main possibilities exist in common
practice (see Figure 1):

1) the file is plaintext. In this case, offline guessing
is clearly unnecessary: the attacker simply reads all
passwords, with nothing to guess [64].

2) the file is hashed but unsalted. Here the passwords
cannot be directly read, but rainbow tables (see be-
low) allow fast hash reversal for passwords within a
fixed set for which a one-time pre-computation was
done. For example, 90% of LinkedIn’s (hashed but
unsalted) passwords were guessed in six days [26].

3) the file is both salted and hashed. Here an offline at-
tack is both possible and necessary. For each guess
against a user account the attacker must compute the
salted hash and compare to the stored value. The
fate of each password now depends on how many
guesses it will withstand.

Position Password
Per-guess

success probability
100 123456 9.1× 10−3

101 abc123 5.2× 10−4

102 princesa 1.9× 10−4

103 cassandra 4.2× 10−5

104 sandara 5.3× 10−6

105 yahoo.co 7.2× 10−7

106 musica17 9.4× 10−8

107 tilynn06 3.1× 10−8

Table 3: Passwords from the Rockyou dataset in position 10m

for m = 0, 1, 2, · · · , 7. Observe that an online attacker who guesses
in optimal order sees his per-guess success rate fall by five orders of
magnitude if he persists to 106 guesses.

4) the file has been reversibly encrypted. This case has
two paths: the attacker either gets the decryption
key (Case 4A), or he does not (Case 4B).

In Case 4A, offline attack is again unneeded: decryp-
tion provides all passwords. In Case 4B, there is no ef-
fective offline attack: even if the password is 123456,
the attacker has no way of verifying this from the en-
crypted file without the key (we assume that encryption
uses a suitable algorithm, randomly chosen key of suffi-
cient length, and standard cryptographic techniques, e.g.,
initialization, modes of operation, or random padding, to
ensure different instances of the same plaintext password
do not produce identical ciphertext [36]). Even having
stolen the password file and exported it without detec-
tion, the attacker’s best option remains online guessing at
the public-facing server; properly encrypted data should
not be reversible, even for underlying plaintext (pass-
words here) that is far from random.

In summary, Figure 1 shows that offline guessing is a
primary concern only in the narrow circumstance when
all of the following apply: a leak occurs, goes unde-
tected,3 and the passwords are suitably hashed and salted
(cf. [8, 64]). In all other common cases, offline attack is
either impossible (guessing at the public-facing server is
better) or unneeded (the attacker gets passwords directly,
with no guessing needed).

Revisiting Table 2 in light of this breakdown, note that
of the breaches listed, Evernote and Gawker were the
only examples where an offline guessing attack was nec-
essary; in all other cases a simpler attack sufficed, and
thus guessing resistance (above that necessary to resist
online attack) was largely irrelevant due to how pass-
words were stored.

Rainbow tables. To understand the importance of
salting as well as hashing stored passwords, consider
the attacker wishing to reverse a given hashed pass-
word. Starting with a list (dictionary) of N candidate
passwords, pre-computing the hash of each, and stor-

3Or similarly, password reset capability is absent or unexercised.

6

Does not leak Does leak

Password file

Leak undetected Leak detected

Plaintext
Reversibly
encrypted

Salted,
hashed

Unsalted,
hashed

Decryption key
doesn’t leak

Decryption
key leaks

No offline attack

Offline attack
not possible

Offline attack unneeded
(plaintext available)

Offline attack ineffective
(if system resets passwords)

Rainbow table
lookup (gets most)

Offline guessing
attack

Offline attack unneeded
(plaintext available)

Figure 1: Decision tree for guessing-related threats in common practice based on password file details. Offline guessing is a threat when the
password file leaks, that fact goes undetected, and the passwords have been properly salted and hashed. In other cases, offline guessing is either
unnecessary, not possible, or addressable by resetting system passwords. Absent a hardware security module (HSM), we expect that the “Decryption
key doesn’t leak” branch is rarely populated; failure to prevent theft of a password file gives little confidence in ability to protect the decryption key.

Length Character set Full cardinality
12 lower 2612 = 256.4

10 lower, upper 5210 = 257.0

9 any 959 = 259.1

10 lower, upper, digit 6210 = 259.5

Table 4: Number of elements targeted by various rainbow tables.

ing each pair sorted by hash, allows per-instance rever-
sal by simple table lookup after one-time order-N pre-
computation—and order-N storage. To reduce storage,
rainbow tables [43] use a series of functions to pre-
compute repeatable sequences of password hashes called
chains, storing only each chain’s first and last plaintext.
Per-instance computation later identifies hashes from the
original fixed password list to a chain, allowing reversal
in greater, but still reasonable, time than had all hashes
been stored. Numerous rainbow table implementations
and services are available.4 For rainbow tables target-
ing selected passwords compositions, Table 4 lists as ref-
erence points the targeted number of passwords, which
give a lower bound on pre-computation time (resolving
expected “collisions” increases computation time).

Modifications [40] may allow tables for any efficiently
enumerable password space, e.g., based on regular ex-

4For example, see http://project-rainbowcrack.com
or sourceforge.net/projects/ophcrack among others.

pressions for defined patterns of lower, upper, digits and
special characters; this would extend attacks from (naive)
brute-force spaces to “smart dictionaries” of similar size
but containing higher-likelihood user passwords. We em-
phasize that offline attacks using pre-computations over
fixed dictionaries, including rainbow tables, are defeated
by proper salting, and require leaked password hashes.

3.3 How many guesses must a password
withstand?

Recall that the online attacker’s guesses are checked by
the backend server, while an offline attacker tests guesses
on hardware that he controls. This constrains online at-
tacks to far fewer guesses than is possible offline.

Online guessing (breadth-first). Consider the on-
line attacker. For concreteness, assume a guessing cam-
paign over a four-month period, sending a guess every
1s at a sustained rate, yielding about 107 guesses; we
use this as a very loose upper bound on the number of
online guesses any password might have to withstand.
An attacker sending guesses at this rate against all ac-
counts (a breadth-first attack) would likely simply over-
whelm servers: e.g., it is unlikely that Facebook’s servers
could handle simultaneous authentication requests from
all users. (In practice, but a tiny fraction authenticate

7

http://project-rainbowcrack.com
sourceforge.net/projects/ophcrack

in any 1s period.) Second, if we assume that the aver-
age user attempts authentication k times/day and fails
5% of the time (due to typos, cached credentials after
a password change, etc.) then a single attacker sending
one guess per-account per-second would send 86, 000/k
times more traffic and 1.73×107/k more fail events than
the entire legitimate user population combined. Even if
k = 100 (e.g., automated clients re-authenticating every
15 minutes) our single attacker would be sending a fac-
tor of 860 more requests and 1.73 × 105 more fails than
the whole legitimate population. Malicious traffic at this
volume against any server is hard to hide. A more re-
alistic average of k = 1 makes the imbalance between
malicious and benign traffic even more extreme. Thus
107 guesses per account seems entirely infeasible in a
breadth-first online guessing campaign; 104 is more re-
alistic.

Online guessing (depth-first). What about depth-first
guessing—is 107 guesses against a single targeted ac-
count feasible? First, note that most individual accounts
are not worthy of targeted effort. Using the Section 2 cat-
egories, low- and medium-consequence sites may have
very few such accounts, while at high-consequence sites
a majority might be worthy. Second, 107 guesses would
imply neither a lockout policy (see Section 4.4) nor any-
thing limiting the rate at which the server accepts login
requests for an account. Third, as evident from Table 3
which tabulates the passwords in position 10m from the
Rockyou distribution for m = 0, 1, 2, · · · , 7, an online
attacker making guesses in optimal order and persist-
ing to 106 guesses will experience five orders of mag-
nitude reduction from his initial success rate. Finally,
IP address blacklisting strategies may make sending 107

guesses to a single account infeasible (albeit public IP
addresses fronting large numbers of client devices com-
plicate this). Thus, the assumptions that would allow 107

online guesses against a single account are extreme—
effectively requiring an absence of defensive effort. 106

seems a more realistic upper bound on how many online
guesses a password must withstand in a depth-first attack
(e.g., over 4 months). This view is corroborated by a
2010 study of password policies, which found that Ama-
zon.com, Facebook, and Fidelity Investments (among
many others) allow 6-digit PIN’s for authentication [23].
That these sites allow passwords which will not (in ex-
pectation) survive 106 guesses suggests that passwords
that will survive this many guesses can be protected from
online attacks (possibly aided by backend defenses). Fig-
ure 2 depicts our view: we gauge the online guessing risk
to a password that will withstand only 102 guesses as ex-
treme, one that will withstand 103 guesses as moderate,
and one that will withstand 106 guesses as negligible.
The left curve does not change as hardware improves.

Offline guessing. Now consider the offline attacker:

using hardware under his control, he can test guesses
at a rate far exceeding online attacks. Improvements
in processing power over time make it possible that his
new hardware computes guesses orders of magnitude
faster than, say, 10-year-old authentication servers which
process (online) login attempts. The task is also dis-
tributable, and can be done using a botnet or stolen cloud
computing resources. An attacker might use thousands
of machines each computing hashes thousands of times
faster than a target site’s backend server. Using a GPU
able to compute 10 billion raw hashes/s or more [18, 26],
a 4-month effort yields 1017 guesses; 1,000 such ma-
chines allows 1014 guesses on each of a million accounts,
or 1020 on a single account—all assuming no defensive
iterated hashing, which Section 3.4 explores as a means
to reduce such enormous offline guess numbers.

Given the lack of constraints, it is harder to bound the
number of guesses, but it is safe to say that offline attacks
can test many orders of magnitude more guesses than on-
line attacks. Weir et al. [60] pursue cracking up to 1011

guesses; a series of papers from CMU researchers inves-
tigate as far as 1014 guesses [32, 35]. To be safe from
offline guessing, we must assume a lower bound of at
least 1014, and more as hardware5 and cracking methods
improve. This is illustrated in Figure 2.

Online-offline gap. To summarize, a huge chasm sep-
arates online and offline guessing. Either an attacker
sends guesses to a publicly-facing server (online) or
guesses on hardware he controls (offline)—there is no
continuum of possibilities in between. The number of
guesses that a password must withstand to expect to sur-
vive each attack differs enormously. A threshold of at
most 106 guesses suffices for high probability of surviv-
ing online attacks, whereas at least 1014 seems necessary
for any confidence against a determined, well-resourced
offline attack (though due to the uncertainty about the
attacker’s resources, the offline threshold is harder to es-
timate). These thresholds for probable safety differ by
8 orders of magnitude. The gap increases if the offline
attack brings more distributed machines to bear, and as
offline attacks and hardware improve; it decreases with
hash iteration. Figure 2 conceptualizes the situation and
Table 5 summarizes.

Next, consider the incremental benefit received in im-
proving a password as a function of the number of
guesses it can withstand (10m). Improvement delivers
enormous gain when m ≤ 3: the risk of online attack
is falling sharply in this region, and safety (from online
guessing) can be reached at about m = 6. By the time
m = 6, this effect is gone; the risk of online attack is now
minimal, but further password improvement buys little
protection against offline attacks until m = 14 (where

5Hardware advances can be partially counteracted by increased
hash iteration counts per Section 3.4.

8

-0.15

0.05

0.25

0.45

0.65

0.85

1.05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21

Online

Offline

Online-offline chasm

log10(#guesses a password withstands)

R
is

k
 o

f
b

e
in

g
 g

u
e

ss
e

d
H

ig
h

Lo
w

M
o

d
e

ra
te

E
x
tr

e
m

e

Figure 2: Conceptualized risk from online and offline guessing as
a function of the number of guesses a password will withstand over a
4-month campaign. In the region from 106 to about 1014, improved
guessing-resistance has little effect on outcome (online or offline).

the probability of offline guessing success starts to de-
cline). Note the large gap or chasm where online guess-
ing is a negligible threat but surviving offline guessing
is still far off. In this gap, incrementally increasing the
number of guesses the password will survive delivers lit-
tle or no security benefit.

For example, consider two passwords which withstand
106 and 1012 guesses respectively. Unless we assume the
offline attacker lacks motivation or resources (and gives
up early), there is no apparent scenario in which the ex-
tra guess-resistance of the second password helps. For
example, a password like tincan24 (which will sur-
vive more than a million guesses derived from the Rock-
you distribution) and one like 7Qr&2M (which lives in a
space that can be exhausted in (26 + 26 + 10 + 30)6 =
926 < 1012 guesses) fare the same: both will survive
online guessing, but neither will survive offline attack.
Equally, a 7-digit and a 13-digit random PIN have simi-
lar security properties for the same reason. If we assume
additional guess-resistance comes at the cost of user ef-
fort [4, 25, 29], then the effort in the second case ap-
pears entirely wasted. In this case, an effort-conserving
approach is to aim to withstand online attacks, but not
put in the extra effort to withstand offline attacks. In
fact there is evidence that many sites abandon the idea
of relying on user effort as the defence against offline at-
tacks; i.e., they appear to make little effort to force users
to reach the higher threshold [23]. Sections 4.1 and 4.2
consider the efficacy of password composition policies
and blacklists.

Frequency of online vs. offline attacks. Authorita-
tive statistics on the relative frequency of online attacks
compared to offline attacks do not exist. However it is
clear that online attacks can be mounted immediately
against public web sites (such attacks are more efficient
when known-valid userids are obtained a priori [24]),
while offline attacks require that the password hashes be

available to the attacker (e.g., leaked file).

3.4 Storage and stretching of passwords

As Section 3.2 stated, storing salted hashes [48] of pass-
words beats most alternatives. In all other common stor-
age options, advanced offline guessing attacks are ei-
ther unnecessary (simpler attacks prevail) or impossible.
Use of site-wide (global) salt defeats generic rainbow ta-
bles; per-account salts (even userid) and iteration counts,
storable with hashes, provide further protection. Unfor-
tunately, for various reasons, hashing is far from univer-
sal (e.g., perhaps 40% of sites do not hash [10]).

Guessing is resource-intensive—an offline attack may
involve billions of guesses per-account, whereas a web-
server verifies login attempts only on-demand as users
seek to log in. Since early UNIX, this has been lever-
aged defensively by hash functions designed to be slow,
by iteration: repeatedly computing the hash of the hash
of the salted password. Such key stretching was formally
studied by Kelsey et al. [33]; we reserve the term key
strengthening for the idea, with related effect, of using a
random suffix salt that verifiers must brute-force. Iterat-
ing 10n times slows offline attack by n orders of magni-
tude; this configurable factor should be engineered to add
negligible delay to users, while greatly increasing an of-
fline attacker’s work. Factors of 4,000–16,000 iterations
already appear in practice. Our estimates for the number
of guesses an offline attacker can send assumed no itera-
tion; hash iteration narrows the online-offline chasm.

Salting also removes one form of “parallel attack”: if
two users have the same password, this will not be appar-
ent and cannot be exploited to simplify attacks (assuming
proper salting and hashing, e.g., salts of sufficient length,
and passwords not truncated before hashing).

Practical instantiations [18] of key stretching (via
so-called adaptive key derivation functions) include
bcrypt [48], supported first in OpenBSD with 128-bit
salt and configurable iteration count to acceptably adjust
delay and server load on given platforms, and allow for
hardware processing advances; the widely used standard
PBKDF2 (part of PKCS #5 v2.0 and RFC 2898); and the
newer scrypt [46] designed to protect against custom-
hardware attacks (e.g., ASIC, FPGA, GPU).

Keyed hashing. Reversible encryption is one of the
worst options for storing passwords if the decryption key
leaks, but is among the best if a site can guarantee that it
never leaks (even if the password file itself does). Justifi-
cation for sites to store passwords reversibly encrypted is
a need to support legacy protocols (see Section 3.5). Ab-
sent such legacy requirements, the best solution is salt-
ing and iterated hashing with a message authentication
code (MAC) [37, 56] stored instead of a hash; password
verification (and testing of guesses) is then impossible

9

without crypto key access. The difficulty of managing
keys should not be understated—too often keys stored in
software or a configuration file are found by attackers,
explaining the common use of a one-way hash over re-
versible encryption. However, if the MAC of a salted,
iterated password hash is all that is stored, then even if
the MAC key leaks, security is equal to a salted iterated
hash; and that risk falls away if a hardware security mod-
ule (HSM) is used for MAC generation and verification.

3.5 Availability of passwords at the server
So salted hashes are a preferred means to store pass-
words, and (cf. Figure 1) an attacker who has access to
the password file, and exports it undetected, still faces a
computationally expensive offline attack. A site suffer-
ing this severe, undetected breach fares far better than
one with plaintext or hashed-unsalted passwords, or re-
versibly encrypted passwords and a leaked decryption
key. Nonetheless, many sites use a non-preferred means
of storing passwords, e.g., there is a “Hall of Shame” of
sites6 which mail forgotten passwords back to users and
thus store them either plaintext or reversibly encrypted.
While the practice is inadvisable for high-consequence
sites, as Section 2 notes, one size clearly does not fit all.

In addition to sites which mail-back passwords, recent
breaches clearly signal that storing plaintext passwords
is not uncommon. In Table 2’s list of recent server leaks,
only two used salted hashes. Failure to store passwords
as salted hashes may be due to confusion, failure to un-
derstand the advantages, or a conscious decision or soft-
ware default related to legacy applications or protocols
as we explain next.

RADIUS (Remote Authentication Dial In User Ser-
vice) is a networking protocol widely used to pro-
vide dial-in access to corporate and university net-
works. Early protocols that allowed client machines to
authenticate such as Password Authentication Protocol
(PAP) and Challenge-Handshake Authentication Proto-
col (CHAP) over RADIUS require passwords be avail-
able (to the server) in-the-clear or reversibly encrypted.
Thus, sites that supported such clients must store pass-
words plaintext or reversibly encrypted. Support for pro-
tocols that supercede PAP and CHAP in commodity OS’s
began only circa 2000. Thus, many sites may have had
to support such clients at least until a decade or so later.

Universities provide interesting examples. Recent pa-
pers by groups researching passwords make clear that
several universities were, at least until recently, storing
passwords reversibly encrypted or as unsalted hashes.
Mazurek et al. (CMU) state [35]: “The university was us-
ing a legacy credential management system (since aban-
doned), which, to meet certain functional requirements,

6See http://plaintextoffenders.com.

reversibly encrypted user passwords, rather than using
salted, hashed records.” Fahl et al. (Leibniz University)
state [21]: “The IDM system stored up to five unique
passwords per user using asymmetric cryptography, so it
would be possible to decrypt the passwords to do a se-
curity analysis.” Zhang et al. (UNC) state [63]: “The
dataset we acquired contains 51,141 unsalted MD5 pass-
word hashes from 10,374 defunct ONYENs (used be-
tween 2004 and 2009), with 4 to 15 password hashes per
ONYEN, i.e., the hashes of the passwords chosen for that
ONYEN sequentially in time.”7

Figure 1 makes clear that if the password is to be avail-
able at the backend (i.e., stored plaintext or reversibly
encrypted) then an offline attack is either unnecessary or
impossible. Thus, any resistance to guessing above and
beyond that needed to withstand online attacks is wasted
(in no scenario does the extra guessing resistance protect
the account from competent attackers). Thus sites that
impose restrictive password policies on their users while
storing passwords plaintext or reversibly encrypted are
squandering effort. An example appears to be a docu-
mented CMU policy [35]: passwords had to be greater
than length 8 and include lower, upper, special characters
and digits. This policy appears designed to withstand an
offline guessing attack which (since passwords were re-
versibly encrypted) had no possibility of occurring, and
thus imposes usability cost without security benefit.

We do not know how common it is for sites to
store passwords plaintext or reversibly encrypted. Large
breaches, such as in Table 2, continue to make clear
that plaintext is common among low- and medium-
consequence sites. The data from CMU and Leibniz hint
that far from being rare exceptions, reversible encryp-
tion of passwords may also be quite common. If true,
this would imply that many sites with strict composition
policies are engaged in a large-scale waste of user effort
based on confused thinking about guessing resistance.

3.6 Other means to address offline attacks
Online guessing attacks seem an unavoidable reality for
Internet assets protected by passwords, while offline at-
tacks occur only in a limited set of circumstances. The
guessing resistance needed to withstand these two types
of attacks differs enormously (recall Section 3.3). Sig-
nificant effort has been devoted to getting users to choose
better passwords. If an online attacker can send at most
106 guesses per account, then it is relatively easy (e.g.,
password blacklists) to resist online guessing. Thus, get-
ting users to choose passwords that will withstand over
106 guesses is an effort to withstand offline attacks, not
online.

7An “ONYEN” is a userid (“Only Name You’ll Ever Need”) in the
single-sign-on system studied.

10

http://plaintextoffenders.com

There are ways to address offline attacks that do not in-
volve persuading users to choose better passwords. Fig-
ure 1 makes clear that if the file doesn’t leak, or the
leak is detected and existing passwords are immediately
disabled, things are very different. Thus alternate ap-
proaches include those that protect the password file, or
allow detection of leaks—neither requiring changes in
user behaviour.

Crescenzco et al. [15] give a method to preclude an
offline attack, even if an attacker gains unrestricted ac-
cess to the backend server. It hinges on the fact that an
offline attacker must guess at a rate far exceeding the nor-
mal authentication requests from the user population (cf.
Section 3.3). They introduce a novel hashing algorithm
that requires randomly indexing into a large collection
of random bits (e.g., 1 TByte). Ensuring that the only
physical connection to the server with the random bits is
matched to the expected rate of authentication requests
from the user population guarantees that the information
needed to compute the hashes can never be stolen. While
the scheme is not standard, it illustrates that ingenious
approaches to prevent password file leaks are possible
(thereby eliminating the possibility of offline attacks).

Leaked password files can also be detected by spiking
password files with honeywords—false passwords which
are salted, hashed and indistinguishable from actual user
passwords [31]. An offline attack which attempts authen-
tication with a “successfully” guessed honeyword alerts
administrators of a breached password file, signalling
that in-place recovery plans should commence.

4 Password policies and system defences

4.1 Composition and length policies
Many approaches have been tried to force users to choose
better passwords. The most common are policies with
length and character-group composition requirements.
Many sites require passwords of length at least 8, with
at least three of four character types (lower- and upper-
case, digits, special characters) so that each password
meets a lower bound by the measure L·log2 C.However,
as Section 3.1 explains, this naive entropy-motivated
metric very poorly models password guessing-resistance
[32, 60]. Users respond to composition policies with
minimally compliant choices such as Pa$$w0rd and
Snoopy2. Passwords scoring better by this metric are
not guaranteed to fare better under guessing attacks. On
examining this, Weir et al. [60] conclude “the entropy
value doesn’t tell the defender any useful information
about how secure their password creation policy is.”

Recent gains in understanding guess-resistance come
largely from analysis of leaked datasets [7, 60]. Since
it appears (including by examining the actual cleartext

passwords) that none of Table 2’s listed sites imposed
strict composition policies on users, we cannot directly
compare collections of passwords created with and with-
out composition polices to see if the policy has a signifi-
cant effect. However, Weir et al. [60] compare how sub-
sets of the Rockyou dataset that comply with different
composition policies fare on guessing resistance. (The
exercise is instructive, but we must beware that a sub-
set of passwords that comply with a policy are not nec-
essarily representative of passwords created under that
policy; cf. [32].) They found that passwords containing
an uppercase character are little better at withstanding
guessing than unrestricted passwords: 89% of the alpha
strings containing uppercase were either all uppercase, or
simply had the first character capitalized (cf. [35]). They
conclude that forcing an uppercase character merely dou-
bles the number of guesses an intelligent attacker would
need. Fully, 14% of passwords with uppercase charac-
ters did not survive 50,000 guesses—thus providing in-
adequate protection even against online attackers.

Including special characters helped more: of pass-
words incorporating one, the number that did not sur-
vive 50,000 guesses dropped to 7%. But common pat-
terns revealed by their analysis (e.g., 28.5% had a single
special character at the end) were not fully exploited by
the guessing algorithm, so this survival rate is optimistic.
Thus including special characters likewise does not pro-
tect robustly even against online attacks.

Kelley et al. [32] examine passwords created by
12,000 participants in a Mechanical Turk study under 8
different composition policies including: basic-length-8,
basic-length-16, and length-8 mandating all of lower, up-
per, digits and special characters. They use a variety
of cracking algorithms to evaluate guessing resistance
of various passwords. Interestingly, while there is enor-
mous variation between the fate of passwords created un-
der different policies at high guess numbers (e.g., 58%
of basic-length-8, but only 13% of basic-length-16 pass-
words were found after 1013 guesses) there was less vari-
ation for numbers of guesses below 106. Also, in each
of the policies tested, fewer than 10% of passwords fell
within the first 106 guesses (our online threshold).

Mazurek et al. [35] examine 25,000 passwords (from
a university single sign-on system) created under a pol-
icy requiring at least length-8 and mandating inclusion
of lower, upper, special characters and digits, and checks
against a dictionary. The cracking algorithms tested
achieved minimal success until 107 guesses, but suc-
ceeded against about 48% of accounts by 1014 guesses.
Depending as they do on a single cracking algorithm,
these must be considered the worst-case success rates for
an attacker; it is quite possible that better tuning would
greatly improve attack performance. In particular, it is
not safe to assume that this policy ensures good survival

11

Attack Guesses Recommended defenses
Online guessing Breadth-first 104 Password blacklist; rate-limiting; account lock-out; recognition of

Depth-first 106 known devices (e.g., by browser cookies, IP address recognition)
Offline guessing Breadth-first 1014 Iterated hashing; prevent leak of hashed-password file; keyed hash

Depth-first 1020 functions with Hardware Security Module support (Sections 3.4, 3.6)
Rainbow table lookup (using extensive pre-computation) n/a Salting; prevent leak of hashed-password file
Non-guessing (phishing, keylogging, network sniffing) n/a Beyond scope of this paper

Table 5: Selected attack types, number of per-account guesses expected in moderate attacks, and recommended defenses. We assume a 4-month
guessing campaign, and for offline guessing that the password file is salted and hashed (see Section 3.4). Rate-limiting includes delays and various
other techniques limiting login attempts over fixed time periods (see Section 4.4). Rainbow tables are explained in Section 3.2.

up to 107 guesses, since most cracking algorithms opti-
mize performance at high rather than low guess numbers.

In answering whether password policies work, we
must first decide what it is we want of them. We use
Section 3.3 which argued that safety from depth-first on-
line guessing requires withstanding 106 guesses, while
safety from offline guessing requires 1014 or more. There
are many tools that increase resistance to online guess-
ing; some offer a simple way to protect against online
guessing with lower usability impact than composition
policies—e.g., password blacklists (see Section 4.2).

The above and further evidence suggest that compo-
sition policies are mediocre at protecting against offline
guessing. For example, over 20% of CMU passwords
were found in fewer than 1011 guesses, and 48% af-
ter 1014 [35]. While the stringent policy (minimum
length eight and inclusion of all four character classes)
has forced half of the population to cross the online-
offline chasm, for practical purposes this is still failure:
we expect most administrators would regard a site where
half of the passwords are in an attacker’s hands as being
100% compromised. Of policies studied by Kelley et al.
[32] only one that required 16 characters gave over 80%
survival rate at 1014 guesses.

Thus, the ubiquity of composition policies (which we
expect stems from historical use, zero direct system cost,
and the ease of giving advice) is at odds with a rela-
tively modest delivery: they help protect against online
attacks, but alternatives seem better. Some policies in-
crease guess-resistance more than others, but none deliv-
ers robust resistance against the level of guessing modern
offline attacks can bring to bear. Given that no aspect of
password security seems to incite comparable user an-
imosity [1, 14, 41], and that this is exacerbated by the
rise of mobile devices with soft keyboards, composition
policies appear to offer very poor return on user effort.

4.2 Blacklists and proactive checking

Another method to avoid weak passwords is to use a
blacklist of known bad choices which are forbidden,
sometimes called proactive password checking [5, 55].
This can be complementary or an alternative to a com-

position policy. Microsoft banned common choices for
hotmail in 2011. In 2009, Twitter banned a list of 370
passwords, which account for (case insensitive) 5.2% of
Rockyou accounts; simply blocking these popular pass-
words helps a significant fraction of users who would
otherwise be at extreme risk of online guessing.

Also examining efficacy, using a blacklist of 50,000
words Weir et al. [60] found that over 99% of passwords
withstood 4,000 guesses; 94% withstood 50,000. Thus,
a simple blacklist apparently offers excellent protection
against breadth-first online attacks and good improve-
ment for depth-first online attacks.

Blacklists of a few thousand, even one million pass-
words, can be built by taking the commonest choices
from leaked distributions. At 106 they may offer ex-
cellent protection against all online attacks. However,
they do not offer much protection against offline attacks.
Blacklists of size 1014 appear impractical. A significant
annoyance issue also increases with list size [35]: users
may understand if a few thousand or even 106 of the most
common choices are forbidden, but a list of 1014 appears
capricious and (in contrast to composition policies) it is
not possible to give clear instructions on how to comply.

As an advantage of blacklists, they inconvenience only
those most at risk. 100% of users using one of Twitter’s
370 black-words is highly vulnerable to online guessing.
By contrast, forcing compliance with a composition pol-
icy inconveniences all users (including those with long
lowercase passwords that resist offline guessing quite
well [35]) and apparently delivers little.

There is a risk that a static blacklist lacks cur-
rency; band names and song lyrics can cause popular-
ity surges that go unrepresented—e.g., the 16 times that
justinbieber appears in the 2009 Rockyou dataset
would likely be higher in 2014. Also, even if the top 106

passwords are banned, something else becomes the new
most common password. The assumption is that ban-
ning the current most popular choices results in a distri-
bution that is less skewed; this assumption does not seem
strong, but has not been empirically verified. In one pro-
posed password storage scheme that limits the popularity
of any password [54], no more than T users of a site are
allowed to have the same password (for a configurable

12

threshold T); this eliminates the currency problem and
reduces the head-end password distribution skew.

4.3 Expiration policies (password aging)

Forced password change at regular intervals is another
well-known recommendation, endorsed by NIST [13]
and relatively common among enterprises and universi-
ties, albeit rarer among general web-sites. Of 75 sites
examined in one study [23], 10 of 23 universities forced
such a policy, while 4 of 10 government sites, 0 of 10
banks, and 0 of 27 general purpose sites did so.

The original justification for password aging was ap-
parently to reduce the time an attacker had to guess a
password. Expiration also limits the time that an attacker
has to exploit an account. Ancillary benefits might be
that it forces users into a different password selection
strategy, e.g., if passwords expire every 90 days, it is less
likely that users choose very popular problematic choices
like password and abcdefg and more likely that
they develop strategies for passwords that are more com-
plex but which can be modified easily (e.g., increment-
ing a numeric substring). As a further potential benefit,
it makes re-use between accounts less likely—whereas
reusing a static password across accounts is easy and
common [22], forced expiration imposes co-ordination
overhead for passwords re-used across sites.

Reducing guessing time is relevant for offline attacks
(an online guesser, as noted, gets far fewer attempts). So
any benefit against guessing attacks is limited to cases
where offline guessing is a factor, which Section 3.2 ar-
gues are far less common.

Reducing the time an attacker has to exploit an ac-
count is useful only if the original avenue of exploitation
is closed, and no alternate (backdoor) access means has
been installed. When the NIST guidelines were written,
guessing was a principal means of getting a password.
An attacker who had successfully guessed a password
would be locked out by a password change; he would
have to start guessing anew. Several factors suggest
that this benefit is now diminished. First, offline pass-
word guessing is now only one avenue of attack; if the
password is gained by keylogging-malware, a password
change has little effect if the malware remains in place.
Second, even if the attack is offline guessing, expiration
turns out to be less effective than believed. Zhang et
al. [63] recently found many new passwords very closely
related to old after a forced reset; they were given access
to expired passwords at UNC and allowed (under care-
fully controlled circumstances) to submit guesses for the
new passwords. The results are startling: they guessed
17% of passwords in 5 tries or fewer, and 41% of ac-
counts in under 3 seconds of offline attacking.

Thus, with forced expiration, new passwords appear

to be highly predictable from old, and the gain is slight,
for a policy competing with composition rules as most-
hated by users. The benefits of forcing users to differ-
ent strategies of choosing passwords, and making re-use
harder may be more important. Given the severe us-
ability burden, and associated support costs, expiration
should probably be considered only for the top end of
the high-consequence category.

4.4 Rate-limiting and lockout policies

A well-known approach to limiting the number of on-
line attack guesses is to impose some kind of lockout
policy—e.g., locking an account after three failed login
attempts (or 10, for a more user-friendly tradeoff [12]).
It might be locked for a certain period of time, or until
the user takes an unlocking action (e.g., by phoning, or
answering challenge questions). Locking for an hour af-
ter three failed attempts reduces the number of guesses
an online attacker can make in a 4-month campaign to
3 × 24 × 365/3 = 8, 760 (cf. Section 3.3). A related
approach increasingly delays the system response after
a small number of failed logins—to 1s, 2s, 4s and so
on. Bonneau and Preibusch [10] found that in practice,
very few sites block logins even after 100 failed logins
(though the sites they studied were predominantly in the
low and medium consequence categories). Secret ques-
tions (Section 4.6), if used, must similarly be throttled.

The two main problems with lockout policies are the
resulting usability burden, and the denial of service vul-
nerability created. Usability is clearly an issue given that
users forget passwords a great deal. The denial of ser-
vice vulnerability is that a fixed lockout policy allows an
attacker to lock selected users out of the site. Incentives
may mean that this represents a greater problem for some
categories of sites than others. An online auction user
might lockout a rival as a deadline approaches; someone
interested in mayhem might lock all users of an online
brokerage out during trading hours.

Throttling online guessing while avoiding intentional
service lockouts, was explored by Pinkas and Sander [47]
and extended by others [2, 59]. Login attempts can
be restricted to devices a server has previously associ-
ated with successful logins for a given username, e.g.,
by browser cookies or IP address; login attempts from
other devices (assumed to be potential online guess-
ing machines) require both a password and a correctly-
answered CAPTCHA. Through a clever protocol, legiti-
mate users logging in from new devices see only a tiny
fraction of CAPTCHAs (e.g., 5% of logins from a first-
time device). The burden on online guessers is much
larger, due to a vastly larger number of login attempts.
The downside of this approach is CAPTCHA usability.

13

4.5 Password meter effectiveness

In addition to offering tips or advice on creating good
passwords, many large sites employ password meters,
purportedly measuring password strength, in an attempt
to nudge users toward better passwords. They are gen-
erally implemented in Javascript in the browser, severely
limiting the complexity of the strength-estimation algo-
rithm implemented—e.g., downloading a very large dic-
tionary to check against is problematic. Thus many me-
ters use flawed measures (see Section 3.1) which cor-
relate poorly with guessing resistance. This also pro-
duces many incongruities, e.g., classifying Pa$$w0rd
as “very strong” and gunpyo as “weak”. Of course, de-
ficiencies in currently deployed meters do not necessarily
imply that the general idea is flawed.

Among recent studies of the efficacy of meters, Ur et
al. [58] examined the effect of various meters on 2,931
Mechanical Turk users, finding that significant increases
in guessing-resistance were only achieved by very strin-
gent meters. The presence of any meter did however pro-
vide some improvement even in resistance to online at-
tacks (i.e., below 106 guesses). De Carnavelet and Man-
nan [17] compare several password meters in common
use and find enormous inconsistencies: passwords be-
ing classified as strong by one are termed weak by an-
other. Egelman et al. [20] explore whether telling users
how their password fares relative to others might have
a greater effect than giving an absolute measure. Those
who saw a meter tended to choose stronger passwords
than those who didn’t, but the type of meter did not make
a significant difference. In a post-test survey 64% of par-
ticipants admitted reusing a password from elsewhere—
such users may have been influenced to re-use a different
old password, but every old password is obviously be-
yond the reach of subsequent influences.

4.6 Backup questions & reset mechanisms

Reset mechanisms are essential at almost every
password-protected site to handle forgotten passwords.
For most cases, it can be assumed the user still has access
to a secondary communication channel (e.g., an e-mail
account or phone number on record)—and the assumed
security of that channel can be leveraged to provide the
reset mechanism. A common practice is to e-mail back
to the user either a reset link or temporary password.

Sites that store passwords cleartext or reversibly en-
crypted can e-mail back that password itself if forgotten,
but this exposes the password to third parties. Mannan
et al. [34] propose to allow forgotten passwords to be re-
stored securely; the server stores an encrypted copy of
the password, with the decryption key known to a user
recovery device (e.g., smartphone) but not the server.

Many sites use backup authentication questions (se-
cret questions) instead of, or in conjunction with, email-
ing a reset link. The advantage of doing both is that an
attacker gaining access to a user’s e-mail account could
gain access to any sites that e-mail reset links. Different
categories of accounts (see Section 2) must approach this
question differently. For high-consequence accounts, it
seems that backup questions should be asked to further
authenticate the user; for lower consequence accounts,
the effort of setting up and typing backup questions must
be taken into account.

When a secondary communication channel is unavail-
able (e.g., the site in question is the webmail provider
itself, or a secondary communication channel was never
set up, or is no longer available) backup questions are
widely used. Unfortunately, plentiful evidence [49, 53]
shows that typically in practice, the guessing-space of
backup question answers is obviously too small, or in-
volves questions whose answers can be looked up on
the Internet for targeted or popular personalities. Several
high-profile break-ins have exploited this fact.

Proposed authentication alternatives exist (e.g., [52]),
but require more study. In summary, the implementation
of password reset mechanisms is sensitive, fraught with
dangers, and may require case-specific decisions.

4.7 Phishing

Guessing is but one means to get a password. Phishing
rose to prominence around 2005 as a simple way to so-
cially engineer users into divulging secrets. There are
two varieties. Generic or scattershot attempts are gen-
erally delivered in large spam campaigns; spear phish-
ing aims at specific individuals or organizations, possibly
with target-specific lures to increase effectiveness.

Scattershot phishing generally exploits user confusion
as to how to distinguish a legitimate web-site from a
spoofed version [19]. The literature suggests many ap-
proaches to combat the problem, e.g., toolbars, tokens,
two-factor schemes, user training. Few of these have en-
joyed large-scale deployment. One that did, the SiteKey
image to allow a user to verify a site, was found not to
meet its design goals [51]: most users entered their pass-
word at a spoofed site even in the absence of the trust
indicator. A toolbar indicator study reached a similarly
pessimistic conclusion [62]. Equally, no evidence sug-
gests any success from efforts to train users to tell good
sites from bad simply by parsing the URL; the task it-
self is ill-defined [29]. In fact, much of the progress
against scattershot phishing in recent years appears to
have been by browser vendors, through better identifi-
cation and blocking of phishing sites.

Spear phishing continues to be a major concern, es-
pecially for high-consequence sites. The March 2011

14

breach on RSA Security’s SecurID hardware tokens was
reportedly8 such an attack. It is too early to say if ap-
proaches wherein administrators send periodic (defen-
sive training) phishing emails to their own users leads
to improved outcomes.

4.8 Re-using email address as username

Many sites (over 90% by one study [10]) encourage or
force users to use an email address as username. This
provides a point of contact (e.g., for password resets—
or marketing), ensures unique usernames, and is memo-
rable. However it also brings several security issues.

It encourages users (subconsciously or otherwise) to
re-use the email password, thereby increasing the threats
based on password re-use [16]. It can facilitate forms
of phishing if users become habituated to entering their
email passwords at low-value sites that users email ad-
dresses as usernames.

Re-using email addresses as usernames across sites
also facilitates leaking information regarding registered
users of those sites [50], although whether a given string
is a valid username at a site can be extracted for non-
email address usernames also [10, 11]. Preventing such
leaks may be as much a privacy issue, as a security issue.

5 Discussion and implications

5.1 System-side vs. client-side defences

Some password-related defences involve implementa-
tion choices between system-side and client-side mecha-
nisms; some attacks can be addressed at either the server
(at cost of engineering effort) or the client (often at cost
of user effort). Table 6 summarizes costs and benefits of
several measures that we have discussed, noting security
benefit and usability cost.

We have seen little discussion in the literature of the
available trade-offs—and implications on cost, security,
usability, and system-wide efficiency with respect to to-
tal user effort—between implementing password-related
functionality client-side vs. server-side. Ideally, all de-
cisions on where to impose costs would be made ex-
plicitly and acknowledged. A danger is that costs of-
floaded to the user are often hard to measure, and there-
fore unmeasured—this does not make the cost zero, but
makes it hard to distinguish from zero. It is a natural con-
sequence that system-side costs, which are more directly
visible and more easily measured, are under-utilized, at
the expense of client-side mechanisms which download
(less visible, harder to measure) cognitive effort to end-
users. For example, forcing users to choose passwords

8http://www.wired.com/2011/08/how-rsa-got-hacked/

that will resist many guesses is a way of addressing the
threat of offline attacks, and relies almost exclusively
on user effort. Investing engineering time to better pro-
tect the password file, to ensure that leaks are likely to
be detected, and to ensure that passwords are properly
salted and hashed (or protected using an offline-resistant
scheme such as discussed in Section 3.6) are alterna-
tives dealing with the same problem that rely on server-
side effort (engineering effort and/or operational time).
Florêncio and Herley [23] found that sites where users
do not have a choice (such as government and university
sites) were more likely to address the offline threat with
user effort, while sites that compete for users and traf-
fic (such as retailers) were more likely to allow password
policies that addressed the online threat only.

Scale is important in deciding how costs should be di-
vided between the server and client sides; what is reason-
able at one scale may be unacceptable at another. For ex-
ample, many web-sites today have many more accounts
than the largest systems of 30 years ago. A trade-off in-
conveniencing 200 users to save one systems adminis-
trator effort might be perfectly reasonable; however, the
same trade-off involving 100 million users and 10 ad-
ministrators is a very different proposition: the factor of
50, 000 increase in the ratio of users to administrators
means that decisions should be approached differently,
especially in any environment where user time, energy,
and effort is a limited resource. There is evidence that
the larger web-sites take greater care than smaller ones
to reduce the burden placed on users [23].

5.2 Take-away points
We now summarize some of the key findings, and make
recommendations based on the analysis above.

Many different types of sites impose passwords on
users; asset values related to these sites and associated
accounts range widely, including different valuations be-
tween users of the same sites. Thus, despite little atten-
tion to date in the literature, recognizing different cate-
gories of accounts is important (cf. Table 1). User ef-
fort available for managing password portfolios is fi-
nite [3, 25, 27, 57]. Users should spend less effort on
password management issues (e.g., choosing complex
passwords) for don’t-care and lower consequence ac-
counts, allowing more effort on higher consequence ac-
counts. Password re-use across accounts in different cat-
egories is dangerous; a major concern is lower conse-
quence sites compromising passwords re-used for high-
consequence sites. While this seems an obvious concern,
a first step is greater formal recognition of different cate-
gories of sites. We summarize this take-away point as:

T1: Recognizing different categories of web-sites is es-
sential to responsibly allocating user password

15

IMPLEMENTATION ASPECT ATTACKS STOPPED OR SLOWED USER IMPACT REMARKS

Password stored non-plaintext Full compromise on server breakin alone None Recommended
Salting (global and per-account) Pre-computation attacks (table lookup) None Recommended
Iterated hashing Slows offline guessing proportionally None Recommended
MAC of iterated, salted hash Precludes offline guessing (requires key) None Best option (key management)
Rate-limiting & lockout policies Hugely reduces online guessing Possible user lockout Recommended
Blacklisting (proactive checking) Eliminates most-probable passwords Minor for small lists Recommended
Length rules Slows down naive brute force attacks Cognitive burden Recommended: length ≥ 8
Password meters Nudges users to “less guessable” passwords Depends on user choice Marginal gain

Password aging (expiration)
Limits ongoing attacker access;

indirectly ameliorates password re-use
Significant;
annoying Possibly more harm than good

Character-set rules May slow down naive brute-force attacks
Cognitive burden. Slows
entry on mobile devices Often bad return on user effort

Table 6: Password-related implementation options. The majority of Remarks are relevant to medium-consequence accounts (see Table 1). It is
strongly recommended that password storage details (e.g., salting, iterated hashing, MAC if used) are implemented by standard library tools.

management effort across sites. Users are best
served by effort spent on higher consequence sites,
and avoiding cross-category password re-use.

While naive “password strength” measures are widely
used, simple to calculate, and have formed the basis for
much of the analysis around passwords, simplistic met-
rics [13] based on Shannon entropy are poor measures of
guessing-resistance (recall Section 3.1). Reasoning that
uses naive metrics as a proxy for security is unsound and
leads to unreliable conclusions. Policies, requirements
and advice that seek to improve password security by
“increasing entropy” should be disregarded.

T2: Crude entropy-based estimates are unsuitable for
measuring password resistance to guessing attacks;
their use should be discouraged.

While choosing passwords that will resist (online and/or
offline) guessing has dominated the advice directed at
users, it is worth emphasizing that the success rate of
several attacks are unaffected by password choice.

T3: The success of threats such as client-side malware,
phishing, and sniffing unencrypted wireless links
are entirely unaffected by password choice.

Password policies and advice aim to have users choose
passwords that will withstand guessing attacks. The
threshold number of guesses to survive online and of-
fline attacks differ enormously. The first threshold does
not grow as hardware and cracking algorithms improve;
the second gradually increases with time, only partially
offset by adaptive password hashing functions (if used).

T4: Password guessing attacks are either online or of-
fline. The guessing-resistance needed to survive the
two differs enormously. Withstanding 106 guesses
probably suffices for online; withstanding 1014 or
more guesses may be needed to resist determined,
well-resourced offline attacks.

There is no continuum of guessing attack types—it is ei-
ther online or offline, with nothing in between. There is a
chasm between the threshold to withstand these two dif-
ferent types. There is little security benefit in exceeding
the online threshold while failing to reach the offline one.
Passwords that fail to completely cross this chasm waste
effort since they do more than is necessary to withstand
online attacks, but still succumb to offline attacks.

T5: Between the thresholds to resist online and of-
fline attacks, incremental improvement in guess-
resistance has little benefit.

Recall that rainbow table attacks are one form of offline
attack, and require access to leaked password hashes.

T6: Rainbow table attacks can be effectively stopped by
well-known salting methods, or by preventing the
leakage of hashed password files.

Analysis of Fig.1 shows that offline attacks are possible
and necessary in only very limited circumstances which
occur far less often than suggested from the attention
given by the research literature. If the password file has
not been properly salted and hashed, then user effort to
withstand beyond 106 guesses is better spent elsewhere.

T7: Offline guessing attacks are a major concern only
if the password file leaks, the leak goes undetected,
and the file was properly salted and hashed (other-
wise simpler attacks work, e.g., rainbow tables).

It follows that sites that store passwords in plaintext or
reversibly encrypted, and impose strict password com-
position policies unnecessarily burden users—the poli-
cies offer zero benefit against intelligent attackers, as any
increased guessing-resistance is irrelevant. The attacker
either has direct access to a plaintext password, or if the
key encrypting the hashed password does not also leak
then the (plaintext) password hashes needed for the of-
fline guessing attack are unavailable.

16

T8: For implementations with stored passwords avail-
able at the server (plaintext or reversibly en-
crypted), composition policies aiming to force resis-
tance to offline guessing attacks are unjustifiable—
no risk of offline guessing exists.

The threat of offline guessing attacks can essentially be
eliminated if it can be ensured that password files do not
leak, e.g., by keyed hash functions with HSM (hardware
security) support. Guessing attack risks then reduce to
online guessing, which is addressable by known mecha-
nisms such as throttling, recognizing known devices, and
proactive checking to disallow too-popular passwords—
all burdening users less than composition policies.

T9: Online attacks are a fact of life for public-facing
servers. Offline attacks, by contrast, can be entirely
avoided by ensuring the password file does not leak,
or mitigated by detecting if it does leak and having a
disaster-recovery plan to force a system-wide pass-
word reset in that case.

6 Concluding remarks

In concluding we summarize the case against consuming
user effort in attempts to resist offline guessing attacks.

1. Honesty demands a clear acknowledgement that we
don’t know how to do so: attempts to get users to
choose passwords that will resist offline guessing,
e.g., by composition policies, advice and strength
meters, must largely be judged failures. Such mea-
sures may get some users across the online-offline
chasm, but this helps little unless it is a critical
mass; we assume most administrators would con-
sider a site with half its passwords in an attacker’s
hands to be fully rather than half compromised.

2. Failed attempts ensure a large-scale waste of user
effort, since exceeding the online while falling short
of the offline threshold delivers no security benefit.

3. The task gets harder every year—hardware ad-
vances help attackers more than defenders, increas-
ing the number of guesses in offline attacks.

4. Zero-user-burden mechanisms largely or entirely
eliminating offline attacks exist, but are little-used.

5. Demanding passwords that will withstand offline at-
tack is a defense-in-depth approach necessary only
when a site has failed both to protect the password
file, and to detect the leak and respond suitably.

6. That large providers (e.g., Facebook, Fidelity, Ama-
zon) allow 6-digit PINs demonstrates that it is pos-
sible to run first-tier properties without placing the
burden of resisting offline attacks on users.

Preventing, detecting and recovering from offline at-
tacks must be administrative priorities, if the burden is
not to be met with user effort. It is of prime impor-
tance to ensure that password files do not leak (or have
content such that leaks are harmless), that any leak can
be quickly detected, and that an incident response plan
allows system-wide forced password resets if and when
needed. Next, and of arguably equal importance, is pro-
tecting against online attacks by limiting the number of
online guesses that can be made (e.g., by throttling or
lockouts) and precluding the most common passwords
(e.g., by password blacklists). Salting and iterated hash-
ing are of course expected, using standardized adaptive
password hashing functions or related MACs.

Acknowledgements. We thank Michael Brogan and
Nathan Dors (U. Washington) for helpful discussions,
anonymous referees, and Furkan Alaca, Lujo Bauer,
Kemal Bicakci, Joseph Bonneau, Bill Burr, Nicolas
Christin, Simson Garfinkel, Peter Gutmann, M. Mannan,
Fabian Monrose, and Julie Thorpe for detailed comments
on a draft. The third author acknowledges an NSERC
Discovery Grant and Canada Research Chair in Authen-
tication and Computer Security.

References
[1] A. Adams and M. A. Sasse. Users Are Not the Enemy. C.ACM,

42(12), 1999.
[2] M. Alsaleh, M. Mannan, and P. C. van Oorschot. Revisiting

defenses against large-scale online password guessing attacks.
IEEE TDSC, 9(1):128–141, 2012.

[3] A. Beautement and A. Sasse. The economics of user effort in
information security. Computer Fraud & Security, pages 8–12,
October 2009.

[4] A. Beautement, M. Sasse, and M. Wonham. The Compliance
Budget: Managing Security Behaviour in Organisations. In
NSPW, 2008.

[5] F. Bergadano, B. Crispo, and G. Ruffo. High dictionary com-
pression for proactive password checking. ACM Trans. Inf. Syst.
Secur., 1(1):3–25, 1998.

[6] J. Bonneau. Guessing human-chosen secrets. University of Cam-
bridge. Ph.D. thesis, May 2012.

[7] J. Bonneau. The science of guessing: analyzing an anonymized
corpus of 70 million passwords. In Proc. IEEE Symp. on Security
and Privacy, pages 538–552, 2012.

[8] J. Bonneau. Password cracking, part II: when does pass-
word cracking matter, Sept.4, 2012. https://www.
lightbluetouchpaper.org.

[9] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano. The quest
to replace passwords: A framework for comparative evaluation
of web authentication schemes. In Proc. IEEE Symp. on Security
and Privacy, 2012.

[10] J. Bonneau and S. Preibusch. The password thicket: Technical
and market failures in human authentication on the web. In WEIS,
2010.

[11] A. Bortz and D. Boneh. Exposing private information by timing
web applications. Proc. WWW, 2007.

[12] S. Brostoff and M. Sasse. “Ten strikes and you’re out”: Increas-
ing the number of login attempts can improve password usability.
CHI Workshop, 2003.

[13] W. Burr, D. F. Dodson, and W. Polk. Electronic Authentication
Guideline. In NIST Special Pub 800-63, 2006.

17

https://www.lightbluetouchpaper.org
https://www.lightbluetouchpaper.org

[14] W. Cheswick. Rethinking passwords. ACM Queue, 10(12):50–
56, 2012.

[15] G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly se-
cure password protocols in the bounded retrieval model. In TCC,
pages 225–244, 2006.

[16] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang. The
tangled web of password reuse. NDSS, 2014.

[17] X. de Carnavalet and M. Mannan. From very weak to very strong:
Analyzing password-strength meters. In Proc. NDSS, 2014.

[18] S. Designer and S. Marechal. Password Secu-
rity: Past, Present, Future (with strong bias towards
password hashing), December 2012. Slide deck:
http://www.openwall.com/presentations/
Passwords12-The-Future-Of-Hashing/.

[19] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In
Proc. CHI, 2006.

[20] S. Egelman, A. Sotirakopoulos, I. Muslukhov, K. Beznosov, and
C. Herley. Does my password go up to eleven? the impact of
password meters on password selection. In Proc. CHI, 2013.

[21] S. Fahl, M. Harbach, Y. Acar, and M. Smith. On the ecological
validity of a password study. In Proc. SOUPS. ACM, 2013.

[22] D. Florêncio and C. Herley. A Large-Scale Study of Web Pass-
word Habits. Proc. WWW, 2007.

[23] D. Florêncio and C. Herley. Where Do Security Policies Come
From? Proc. SOUPS, 2010.

[24] D. Florêncio, C. Herley, and B. Coskun. Do Strong Web Pass-
words Accomplish Anything? Proc. Usenix Hot Topics in
Security, 2007.

[25] D. Florêncio, C. Herley, and P. van Oorschot. Password portfolios
and the finite-effort user: Sustainably managing large numbers of
accounts. In Proc. USENIX Security, 2014.

[26] D. Goodin. Why passwords have never been weaker
and crackers have never been stronger, 2012. Ars Tech-
nia, http://arstechnica.com/security/2012/08/
passwords-under-assault/.

[27] B. Grawemeyer and H. Johnson. Using and managing multi-
ple passwords: A week to a view. Interacting with Computers,
23(3):256–267, 2011.

[28] E. Grosse and M. Upadhyay. Authentication at scale. IEEE
Security & Privacy, 11(1):15–22, 2013.

[29] C. Herley. So Long, And No Thanks for the Externalities: Ratio-
nal Rejection of Security Advice by Users. Proc. NSPW, 2009.

[30] C. Herley and P. van Oorschot. A research agenda acknowledging
the persistence of passwords. IEEE Security & Privacy, 10(1):28–
36, 2012.

[31] A. Juels and R. L. Rivest. Honeywords: Making password-
cracking detectable. In Proc. ACM CCS, pages 145–160, 2013.

[32] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas,
L. Bauer, N. Christin, L. F. Cranor, and J. Lopez. Guess again
(and again and again): Measuring password strength by simu-
lating password-cracking algorithms. In Proc. IEEE Symp. on
Security and Privacy, 2012.

[33] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure appli-
cations of low-entropy keys. Proc. ISW’97—Springer LNCS,
1396:121-134, 1998.

[34] M. Mannan, D. Barrera, C. D. Brown, D. Lie, and P. C. van
Oorschot. Mercury: Recovering forgotten passwords using per-
sonal devices. In Financial Cryptography, pages 315–330, 2011.

[35] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin,
L. F. Cranor, P. G. Kelley, R. Shay, and B. Ur. Measuring pass-
word guessability for an entire university. In ACM CCS, 2013.

[36] A. Menezes, P. van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[37] A. Menezes, P. van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[38] R. Morris and K. Thompson. Password Security: A Case History.
C.ACM, 22(11):594–597, 1979.

[39] A. Muller, M. Meucci, E. Keary, and D. Cuthbert, ed-

itors. OWASP Testing Guide 4.0. Section 4.5: Au-
thentication Testing (accessed July 27, 2014), https:
//www.owasp.org/index.php/OWASP_Testing_
Guide_v4_Table_of_Contents.

[40] A. Narayanan and V. Shmatikov. Fast dictionary attacks on pass-
words using time-space tradeoff. ACM CCS, 2005.

[41] D. Norman. The Way I See It: When security gets in the way.
Interactions, 16(6):60–63, 2009.

[42] oclHashcat. http://www.hashcat.net/.
[43] P. Oechslin. Making a faster cryptanalytical time-memory trade-

off. Advances in Cryptology - CRYPTO 2003, 2003.
[44] Openwall. http://www.openwall.com/john/.
[45] OWASP. Guide to Authentication. Accessed July 27,

2014, https://www.owasp.org/index.php/Guide_
to_Authentication.

[46] C. Percival. Stronger key derivation via sequential memory-hard
functions. In BSDCan, 2009.

[47] B. Pinkas and T. Sander. Securing Passwords Against Dictionary
Attacks. ACM CCS, 2002.

[48] N. Provos and D. Mazieres. A future-adaptable password scheme.
In USENIX Annual Technical Conference, FREENIX Track,
pages 81–91, 1999.

[49] R. W. Reeder and S. Schechter. When the password doesn’t work:
secondary authentication for websites. IEEE Security & Privacy,
9(2):43–49, 2011.

[50] P. F. Roberts. Leaky web sites provide trail of clues about corpo-
rate executives. ITworld.com, August 13, 2012.

[51] S. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The em-
peror’s new security indicators: evaluation of website authentica-
tion and effect of role playing on usability studies. In Proc. IEEE
Symp. on Security and Privacy, 2007.

[52] S. Schechter, S. Egelman, and R. Reeder. It’s not what you know,
but who you know: a social approach to last-resort authentication.
In Proc. CHI, 2009.

[53] S. E. Schechter, A. J. B. Brush, and S. Egelman. It’s no secret:
Measuring the security and reliability of authentication via “se-
cret” questions. In Proc. IEEE Symp. Security & Privacy, 2009.

[54] Schechter, S. and Herley, C. and Mitzenmacher, M. Popular-
ity is everything: A new approach to protecting passwords from
statistical-guessing attacks. Proc. HotSec, 2010.

[55] E. H. Spafford. OPUS: Preventing weak password choices.
Computers & Security, 11(3):273–278, 1992.

[56] J. Steven and J. Manico. Password Storage Cheat Sheet (OWASP).
OWASP. Apr.7, 2014, https://www.owasp.org/index.
php/Password_Storage_Cheat_Sheet.

[57] E. Stobert and R. Biddle. The password life cycle: user behaviour
in managing passwords. In Proc. SOUPS, 2014.

[58] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. Mazurek,
T. Passaro, R. Shay, T. Vidas, L. Bauer, et al. How does your
password measure up? The effect of strength meters on password
creation. In Proc. USENIX Security, 2012.

[59] P. van Oorschot and S. Stubblebine. On Countering Online Dic-
tionary Attacks with Login Histories and Humans-in-the-Loop.
ACM TISSEC, 9(3):235–258, 2006.

[60] M. Weir, S. Aggarwal, M. Collins, and H. Stern. Testing metrics
for password creation policies by attacking large sets of revealed
passwords. In Proc. ACM CCS, 2010.

[61] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek. Password
cracking using probabilistic context-free grammars. In Proc.
IEEE Symp. on Security and Privacy, pages 391–405, 2009.

[62] M. Wu, R. Miller, and S. L. Garfinkel. Do Security Toolbars
Actually Prevent Phishing Attacks. Proc. CHI, 2006.

[63] Y. Zhang, F. Monrose, and M. K. Reiter. The security of modern
password expiration: An algorithmic framework and empirical
analysis. In Proc. ACM CCS, 2010.

[64] E. Zwicky. Brute force and ignorance. ;login:, 35(2):51–52, April
2010. USENIX.

18

http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/
http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/
http://arstechnica.com/security/2012/08/passwords-under-assault/
http://arstechnica.com/security/2012/08/passwords-under-assault/
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
https://www.owasp.org/index.php/OWASP_Testing_Guide_v4_Table_of_Contents
http://www.hashcat.net/
http://www.openwall.com/john/
https://www.owasp.org/index.php/Guide_to_Authentication
https://www.owasp.org/index.php/Guide_to_Authentication
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

	Introduction
	Classifying accounts into categories
	Guessing attacks and password storage
	Password strength: ideal vs. actual
	Online and offline guessing
	How many guesses must a password withstand?
	Storage and stretching of passwords
	Availability of passwords at the server
	Other means to address offline attacks

	Password policies and system defences
	Composition and length policies
	Blacklists and proactive checking
	Expiration policies (password aging)
	Rate-limiting and lockout policies
	Password meter effectiveness
	Backup questions & reset mechanisms
	Phishing
	Re-using email address as username

	Discussion and implications
	System-side vs. client-side defences
	Take-away points

	Concluding remarks

