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Abstract
We describe a method to separate abuse from legitimate

traffic when we have categorical features and no labels are
available. Our approach hinges on the observation that, if we
could locate them, unattacked bins of a categorical feature
x would allow us to estimate the benign distribution of any
feature that is independent of x. We give an algorithm that
finds these unattacked bins (if they exist) and show how to
build an overall classifier that is suitable for very large data
volumes and high levels of abuse. The approach is one-sided:
our only significant assumptions about abuse are the existence
of unattacked bins, and that distributions of abuse traffic do
not precisely match those of benign.

We evaluate on two datasets: 3 million requests from a
web-server dataset and a collection of 5.1 million Twitter ac-
counts crawled using the public API. The results confirm that
the approach is successful at identifying clusters of automated
behaviors. On both problems we easily outperform unsuper-
vised methods such as Isolation Forests, and have comparable
performance to Botometer on the Twitter dataset.

1 Introduction

Abuse is ubiquitous on the modern web. Services intended
for human use must often contend with large volumes of bot
traffic which consume resources and degrade the quality of
experience delivered to legitimate users. This is especially
true if there is a strategy that allows monetization of the abuse.
Spam is an obvious example, but there are numerous others.
Password-guessing, web-scraping, CAPTCHA-solving, auto-
mated signup requests, inauthentic social-media engagements
and ranking- and click-fraud are examples of the large-scale
automated abuse that online attackers engage in.

Service providers thus have a difficult task in maintaining
good quality of service: they wish to block as much bot traffic
as possible with minimum inconvenience to legitimate human
users. None of the available solutions are without problems.
CAPTCHAs, or tasks intended to be easy for humans but

hard for bots [3,10], are widely employed but have had mixed
results. They cause considerable friction to users and there
has been significant success in breaking them in an auto-
mated way [9] [8]. Attaching reputation to IP addresses that
engage in abuse has achieved considerable success [35], but
implicitly assumes that abuse comes from a limited pool of
IP addresses and that this pool does not significantly overlap
that used by legitimate users; further it assumes this lack of
overlap will persist during deployment. Providers with tens
or hundreds of millions of users attacked from botnets with
millions of consumer IP addresses are unlikely to be able
to rely on reputation for reliable decisions. Supervised ma-
chine learning approaches are often inapplicable since for
many abuse problems there is no possibility of obtaining la-
bels. Indeed, some authors who have tried supervised ML
approaches reach pessimistic conclusions on its suitability
for bot detection; e.g, Jan et al [28] write “We argue that [a]
rule-based system should be the first choice over machine
learning for bot detection.” Anomaly detection approaches
are often geared towards discovering outliers that are “few
and isolated” [12]. By contrast, the abuse types listed above
can sometimes be 10 - 90% of overall traffic. Thus, there is
real difficulty applying anomaly detection techniques to this
problem. Unsupervised learning approaches (e.g., one-class
SVMs [32] and Isolation Forests [31]) usually assume nu-
meric features, and often struggle when we one-hot encode
categorical features.

In this paper we introduce a new method to estimate the
likelihood that incoming traffic requests are from bots. The
approach is designed for very noisy environments, e.g., where
50% or more of traffic is abuse. Our approach hinges on
the observation that if we can identify buckets of traffic that
contain little or no abuse then (under certain independence
assumptions) we can estimate the clean distributions. For
example, if none of the abuse traffic from Iowa uses Firefox
then P(x|Iowa, Firefox) gives us the clean distribution of x
for any feature that is independent of both state and browser
family. Obviously, we must be careful about independence
assumptions, and finding unattacked buckets is non-trivial,



but if we can do these two things we will have the core of
what we need.

Our contributions are as follows. We give a method to es-
timate the likelihood that a request is bot rather than human
generated. The method is entirely unsupervised and requires
no labels. It is one-sided, and attempts to estimate only the
distributions of features in the benign1 traffic. Hence the as-
sumptions about attack traffic are mild; in particular we do
not assume stationarity of attack traffic, we do not assume
that abuse patterns seen in training will continue to be seen in
deployment, and we do not assume a scarcity of any partic-
ular resource, such as IP addresses, available to the attacker.
Our main attack assumptions are that at least some bins of
at least some categorical features receive little or no attack
traffic, and that at least some of the abuse distributions differ
from the benign (e.g., the benign distribution are unknown or
unachievable to the attacker). We show how these relatively
unattacked bins can be identified, how they can be used to
estimate feature distributions in the clean traffic, and hence
calculate the odds of being bot for any request. This method
is robust even if 90% or more of the traffic is abuse. The
technique requires large amounts of data and may be more
suitable to large rather than small or medium-scale services.
We evaluate on a web-log dataset and a collection of 5.1 mil-
lion Twitter accounts crawled between January and May 2021.
We call the algorithm PROS after the central mechanism of
its implementation: Pivot and seek Rank-One Sub-matrix.

2 Design principles

Our design goals and principles are as follows:

1. Unsupervised: for many abuse problems labels are un-
available and there is no way of establishing ground
truth.

2. One-sided: We estimate only the clean distributions. We
do not assume that patterns observed in attack behavior
will persist, or that the attack traffic seen in training is
representative of deployment.

3. Categorical features: much of the information collected
from a browser is categorical making it difficult to use
algorithms that assume real-valued features.

4. Robust to base-rate uncertainty and variation: the
approach should work if the base-rate of malicious traffic
is 10% of total, 90% of total, or anything in between. It
should be robust to variations in the base-rate.

5. Interpretable: Ideally, human operators should be able
to understand classification decisions.

1Note: we use the terms benign and malicious to refer to scripted and
non-scripted traffic, even when scripted traffic presents no harm.

We next explain our reasoning in choosing these principles.
Unsupervised: Many abuse problems are inherently unsu-

pervised. Web traffic that is a mixture of malicious and benign
offers no real way to establish ground truth. This is not simply
a question of cost or resources; even if we had unlimited bud-
get for human-labelling, the information available at the time
of the request is not enough for a human to distinguish bot
from legitimate requests. Chio and Freeman summarize [15]:

Unlike spam, which can be given to a human to
evaluate, there is no reasonable way to present an
individual request to a reviewer and have that per-
son label the request as bot or not.

For many problems labelling even a small portion of the data
is generally not possible. This property is common to a large
number of abuse types (e.g., scraping, click-fraud, password
guessing, credential stuffing). A recent paper by Xu et al [39]
describing Facebook’s abusive account detection acknowl-
edges the absence of ground-truth labels and notes that it
relies on “the results of rule-based heuristics as additional
‘approximate labels.”’

One-sided: Our detection method is a one-sided, or one-
class classifier, meaning that we estimate only the clean dis-
tribution. We make no effort to identify or codify patterns
of malicious behavior. It may be that one attacker sends a
million requests per day using Chrome59.0.3451, or from a
narrow block of IP addresses, or at a constant rate instead of
the expected diurnal variation. We will not seek out these pat-
terns; rather they will emerge naturally when distributions in
the abuse traffic differs from those of the benign traffic. In fact
exploiting any such patterns, if they exist, assumes that what
is seen in training is representative of deployment. Avoiding
this assumption means our approach is robust to changes in
the malicious traffic: it is deviation from the estimated clean
distribution that causes traffic to be marked as abusive rather
than any heuristic as to what counts as suspicious or assump-
tions about the persistence of observed abusive behavior.

Categorical features: For many abuse problems the avail-
able features are categorical. This is certainly true for prob-
lems involving web-traffic (see Section 6), but also for many
others. This restricts our options considerably since many
ML and anomaly detection algorithms work with numeric
features [12,25]. Unsupervised ML methods often rely on the
assumption that observations that are close in feature space
are more likely to belong to the same class. When we have
no natural idea of distance, as for categorical features, these
methods are hard to apply. Mapping categorical features to nu-
meric (e.g., using one-hot encoding) doesn’t help much since,
along each feature, observations are still either a distance
of 0 or 1 apart. Other attempts to define a distance are also
problematic. For example, traffic from ‘Chrome77.0.3770’ (a
major release of the browser) might be predominantly benign
while ‘Chrome77.0.3771’ (a non-released made-up version)
might be 100% malicious; the closeness of the strings tells us



nothing about likelihood of belonging to the same class.
Our method is close in spirit to many anomaly detection

(AD) approaches; in AD it is also common to estimate the
clean distribution and punish deviations. In spite of this simi-
larity it is difficult to leverage existing AD techniques without
modification. Many AD approaches rely on distance or den-
sity methods. The underlying assumption is that things close
in feature space have high likelihood of being in the same
class. This is true for K-means, K Nearest Neighbors, Iso-
lation Forests [31], One-Class SVMs [32], etc. We review
related anomaly detection work in Section 3.

Base-rate uncertainty: In abuse problems we seldom have
a strong prior about the fraction of received traffic that is
from bots. It’s hard to say a priori whether sign-up abuse, or
password guessing, or CAPTCHA-solving attempts are 5%,
50% or even 90% of total. For very large providers some
forms of abuse presumably never entirely go away, but the
amount might vary enormously over time as attackers gain
or lose resources, change strategy, or alter their targets. Rules
with fixed thresholds are likely to trade true for false positives
at very different rates depending on the base-rate.

A related problem is that the base-rate can vary between
training and deployment. Many supervised approaches as-
sume that the ratio of benign to malicious seen in deployment
is the same as seen in training [22] (and have performance
that deteriorates rapidly if it is not [29]). Given the high-flux
nature of abuse traffic this appears a problematic assumption.
We seek an approach that works well across a wide range of
base-rates.

Interpretability: We wish for the classification decisions
to be explainable to a human operator. This is particularly
important for unsupervised approaches where the absence
of ground-truth labels means that traditional true and false
positive metrics, Receiver Operator Characteristic (ROC)
curves and Area Under Curve (AUC) metrics are unavail-
able. Human-interpretable decisions also clearly helps with
maintainability and debugging.

Our approach outputs human-interpretable rules that can
be very useful in identifying clusters of bot activity. If a bot
sends significant traffic from Florida using IE9 then a rulset
based on features state and browser will have a rule “Florida
and IE9” near the top when sorted by bot likelihood.

3 Related work

Bot and scripted traffic have long posed problems for web
services. Dwork and Naor [10] were perhaps the first to recog-
nise the issue and propose a ‘proof of work’ to deter excessive
use of free or unmetered services. CAPTCHAs are one ap-
proach [3] and most large web services use them in one form
or other. Most CAPTCHAs have been shown to be break-
able [8], and they do not appear to offer a durable robust
defense. They also, of course, place a significant burden on
the user population. Douceur first describes the problem that

automated creation of pseudonymous account are for web
services [19]; the magnitude of the problem has ballooned in
the two decades since.

Sommer and Paxson [33] offer an excellent summary of the
issues involved in applying ML to security problems. Among
the issues that they highlight are lack of labels, and the ab-
sence of standardized datasets. Their emphasis is on intrusion
detection, but both of these are certainly factors for abuse prob-
lems. Chio and Freeman [15] give a more recent overview of
ML applications in security including abuse problems such
as account creation and hijacking. They suggest clustering
approaches which can detect large-scale coordination. They
suggest mechanisms such as locality sensitive hashing as a
measure of closeness for objects such as domain names which
may be related but not identical.

An excellent survey of anomaly detection (AD) techniques
is given by Chandola et al [12]. The common approach in
anomaly detection is to estimate P(xxx|bot) in a ‘bake-in’ pe-
riod. That is, it is expected that anomalies are rare, so that
we can estimate the distribution using any available window
and be confident that it approximates the true distribution.
This often does not work for abuse problems since we can-
not count on any particular time period being attack-free.
Nonetheless our approach has much in common with AD
techniques: unattacked bins play the role that a ‘bake-in’ pe-
riod plays in many AD methods. Our approach is similar, in
principle, to Herley and Schechter’s method to detect pass-
word brute-forcing attacks [26]. They observe that the ratio
of fails to successful logins acts as a proxy measure for the
amount of attack traffic, and use this to identify unattacked
subsets. Emmott et al [20] describe an approach to bench-
marking AD algorithms, but the emphasis is on anomalies
that are rare.

Important unsupervised learning approaches include Iso-
lation Forests [31], One-Class SVMs [32] and clustering
approaches, such as K-means and variants [27]. Each of
these methods assumes numeric features and do not adapt
uneasily to categorical features where there is no natural mea-
sure of distance between data points. That is, most unsuper-
vised methods assume that closeness in feature space implies
greater likelihood of belonging to the same class; this breaks
down when we have categorical features (and thus no natural
idea of distance). One-hot encoding is the common way of
mapping categorical features to numeric; however, when the
number of features is small we end up with only a limited
number of discrete distances possible between samples; this
greatly compromises performance.

There have been a number of approaches to detecting bot
behavior and traffic. Ferrara et al [21] describe content, net-
work and temporal characteristics of Twitter bots and give a
review of detection mechanisms. Botometer (formerly Bot-or-
not) [17] is a project at Indiana University that estimates bots
based on account activity. When accounts have very little ac-
tivity Botometer has no basis to make a decision. The public



API that they expose is our main baseline for comparison in
Section 7.

Thomas et al [37] describe the thriving underground market
for Twitter spam and abuse accounts. They use the accounts
they discover being traded to train a supervised detection algo-
rithm. Chavoshi et al [13] describe detecting Twitter clusters
of bots by detecting highly synchronized activity. The idea is
that managing a large collection of sybil accounts will often
result in high temporal correlation in the activity of those
accounts.

Kudugunta and Ferrara [30] describe a DNN approach to
social bot detection. They use synthetic minority oversam-
pling [14] which generates a large amount of synthetic la-
belled data from a smaller number of actual labels. Jan et
al [28] also leverage a small amount of labelled data to syn-
thesize quantities that can be used by neural networks. They
echo some of findings of Sommer and Paxson [33] on the
limitations of ML methods.

Given the importance of the problem there is a significant
body of work on detecting social media bots. We should be
clear that we do not claim to rival the performance of state-
of-the-art detection: our testing on a Twitter dataset is driven
by availability rather than an expectation that it is particularly
suited to this domain. Grier et al do a large scale character-
ization of Twitter spam [24]. They find Twitter spammers
achieve much higher clickthrough rates than on other plat-
forms, and high-levels of use of URL shortening services.
Benevenuto et al [5] describe detecting spammers on Twitter.
A portion of accounts in a large dataset were manually la-
belled as spammer/not-spammer as a front-end to a supervised
learning approach. Stringhini et al [34] describe a honeypot
approach to the detection of spammers on social networks. By
creating hundreds of honey accounts they were able to detect
large volume of spam activity. Cao et al describe detecting
clusters of malicious accounts on Facebook [11]. They ob-
serve that malicious accounts under a single attacker’s control
often perform actions that are synchronized or correlated in
time. Xiao et al describe detecting clusters of fake accounts
on LinkedIn [38]. The approach is supervised using manually
generated labels on a sample of accounts. Stringhini et al [36]
present a measurement study of the market for Twitter follow-
ers. The approach leverages the labels to find large clusters of
accounts that share characteristics (e.g., naming patterns etc).
Stringhini et al [35] describe how to detect clusters of related
malicious accounts by observing that the contact points (or IP
addresses) used to access them are often shared. Xu et al de-
scribe an approach to detecting abusive accounts at Facebook
using a small number of human-labelled samples augmented
by lower-precision automated labels [39].

4 Sketch of method

The traffic we observe is a mixture of malicious and benign.
Let xxx = (x0,x1,x2, · · · ,xM−1) be a vector of observed features.

For example, these might be time, browser version, IP ad-
dress, country, city, state, etc. We’ll assume that the features
of interest are categorical or ordinal (this is the case for most
measurements available from a browser connection), so that
feature x j can take any of N j different values. Time might be
quantized to hour-of-day so that xi takes one of 24 discrete
values, browser version might have 60 or so buckets for the
most common versions and one bucket for everything else.

The traffic observed, O(xxx), is a mixture of clean, C(xxx) and
bot, B(xxx) :

O(xxx) = C(xxx)+B(xxx).

We’ll find it convenient to deal with distributions, which we
derive by normalizing the histograms:

P(xxx) =
O(xxx)
|O|

, P(xxx|bot) =
C(xxx)
|C|

, P(xxx|bot) =
B(xxx)
|B|

.

The fraction of traffic that is clean is:

α =
|C|

|C|+ |B|
. (1)

Thus, the received distribution is:

P(xxx) = α ·P(xxx|bot)+(1−α) ·P(xxx|bot), (2)

where 0 < α≤ 1. Obviously, P(xxx|bot), P(xxx|bot) and α are all
unknown.

Bot traffic might come from a single attacker, or from many.
In general we should have

P(xxx|bot) =
Q−1

∑
q=0

wq ·P(xxx|botq), (3)

where Q is the number of distinct attackers and the wq are the
weights of their contributions. If Q = 1 (i.e., there’s only one
attacker) then it might be plausible that the xi are independent
in the bot traffic. This might be the case, for example, if the
attacker simply ranges over several possible bins for each
feature using a for-loop. If Q > 1 (i.e., there are several
attackers) it’s extremely unlikely that the xi are independent
in the bot traffic. This is the case, since the sum of separable
functions is not in general separable.

Suppose we assume that the xi are independent in the be-
nign traffic2, i.e., P(xxx|bot) = ∏i P(xi|bot). This simply says
that, for example, browser version does not depend on time-
of-day, etc. This gives that the overall observed distribution
is:

P(xxx) = α ·∏
i

P(xi|bot)+(1−α) ·P(xxx|bot),

and the marginal observed distribution along x j:

P(x j) = α ·P(x j|bot)+(1−α) ·P(x j|bot).

2Note: we will actually only assume conditional independence over sub-
sets of the data, see Section 5. We do not assume the same thing for the
malicious traffic. This is strictly weaker than the independence assumption
made in many supervised algorithms.



We can also calculate the marginal distribution restricted to
subsets of the data; for example restricting to a particular
bucket of one feature xk = x

′
k we get:

P(x j|x
′
k) = α

′
k ·P(x j|bot,x

′
k)+(1−α

′
k) ·P(x j|bot,x

′
k),

where α
′
k is the (unknown) fraction of traffic in this bucket

that is benign:

α
′
k =

|C(xxx j|x
′
k)|

|C(xxx j|x
′
k)|+ |B(xxx j|x

′
k)|

.

Note that (because of assumed independence)
P(x j|bot,x

′
k) = P(x j|bot,x

′′
k) = P(x j|bot).

Now suppose that this bucket xk = x
′
k receives no attack traf-

fic (e.g., there’s no attack traffic in the browser = ‘Firefox67’
or state = ‘Iowa’ buckets, etc). This gives us that α

′
k = 1,

P(x j|bot,x
′
k) = 0 and hence:

P(x j|x
′
k) = P(x j|bot), j 6= k. (4)

In words: any unattacked bucket xk = x
′
k of the k-th feature

tells us the benign distribution for every other feature x j (for
j 6= k) that is independent of xk in the benign traffic.

Armed with the clean distribution, the problem is now sim-
ple. The odds that an observation is malicious can be ex-
pressed:

P(bot|xxx)
P(bot|xxx)

=
P(xxx)−α ·P(xxx|bot)

α ·P(xxx|bot)

=
P(xxx)−α ·∏i P(xi|bot)

α ·∏i P(xi|bot)
. (5)

From (4) we can get the clean distributions P(xi|bot) needed
to calculate this odds if we can find unattacked buckets in at
least two features.

This would leave α as the sole remaining unknown param-
eter. Note that (5) is monotonic in α, so that the order is not
affected by α. To see this, denote as Odds(xxx,α) the left-hand
side of (5) and observe that if Odds(xxx,α)> Odds(yyy,α) then

P(xxx)
α ·P(xxx|bot)

−1 >
P(yyy)

α ·P(yyy|bot)
−1

which simplifies to

P(xxx) ·P(yyy|bot)> P(yyy) ·P(xxx|bot),

which is independent of α. Thus, if Odds(xxx,α)> Odds(yyy,α)
is true for any α it is true for all α. In other words if we fix α

then (5) will give us a ranking of observations from most to
least suspicious; if we’re wrong about α we will still be right
about the ordering.

4.1 Toy example

A toy example in words may help clarify the idea. Suppose,
for US traffic, we examine only three features: browser ver-
sion (e.g., ‘Chrome77’, ‘Firefox69’, ‘Edge17’, etc), state (i.e.,
‘Alabama’, ‘Alaska’, etc) and local hour-of-day (i.e., 0 to 23).
We might have 60 buckets for the most common browser
versions (throwing everything else into a catchall ‘isRest’
bucket). Thus, there are 60× 50× 24 possible 3-tuples and
every request is quantized into one of them. The assumption
of independence is that (in the benign traffic):

P(br, st, hr|bot) = P(br|bot) ·P(st|bot) ·P(hr|bot).

So that, for example,

P(hr|bot, ‘Chrome77’)≈ P(hr|bot, ‘Firefox69’);

i.e., the time-of-day distribution doesn’t differ by browser
choice in the benign traffic. Equally,

P(br|bot, ‘Michigan’)≈ P(br|bot, ‘Georgia’);

i.e., the benign browser distribution doesn’t differ by loca-
tion3.

Now suppose that there is no attack traffic from, e.g., Iowa.
From (4) this means that we can calculate

P(br|bot) = P(br|‘Iowa’)

and

P(hr|bot) = P(hr|‘Iowa’).

Also suppose there is no attack traffic from ‘IE9’; this gives

P(st|bot) = P(st|‘IE9’)

and

P(hr|bot) = P(hr|‘IE9’).

This means that, given an observation xxx= (br, st, hr), the odds
of being malicious are (from (5)):

P(br, st, hr)
α ·P(br|‘Iowa’) ·P(st|‘IE9’) ·P(hr|‘Iowa’)

−1.

That is, except for α, we have everything we need to calcu-
late the odds. Since we saw that the order of odds ratio was
independent of α any fixed α gives a ranking from most to
least likely to be malicious. All that we needed to assume was
independence of the features in the benign traffic, and that we
had unattacked buckets in some of the features.

3Note: we will relax any assumption of global independence in Section 5
below.



5 Detailed Description

Independence as described in Section 4 is an idealization. In
practice we must expect many features will have some depen-
dence on other features. Firefox might represent 15% of the
market in France, but only 2% in Mexico, for example, indi-
cating a dependence between browser family and country. It is
unrealistic to expect complete mutual independence of all of
the features that might be valuable in making a classification
(although supervised approaches often assume this of both
benign and malicious traffic). In addition to the three features
used in the toy example of Section 4.1 we will want to con-
sider others. Information available from the browser such as
languages, fonts and plugins installed, protocols available, etc
can all be valuable. Web services that involve user-provided
input (e.g., form-filling) will have valuable textbox inputs;
e.g., an account signup page will have a user-chosen user-
name.

That independence is a problematic assumption is probably
especially true of a global service. The larger the population
of users the more diverse the traffic is likely to be. Browser-
language is more likely to be independent of browser family
at the web portal of a small regional bank than at Facebook.
Independence means that the multivariate distribution is the
product of 1-dimensional distributions. The larger and more
diverse the traffic population the harder this is to guarantee.
However, features that might not be globally independent
might be locally independent subject to some condition. For
example, browser version might not be independent of hour-
of-day globally, but might be within particular countries.

There is formal support for the view that we can get condi-
tional independence if we break a large dataset into smaller
subsets. Formally, if P(xxx) = ∏k P(xk) then it is a rank-1 ten-
sor (i.e., it is the product of 1-dimensional factors). However,
every matrix or tensor can be written as a sum of rank-1 com-
ponents [7, 23]. The rank of a tensor is the minimum number
of rank-1 tensors required to express it in a sum. Instead of
assuming global independence of features we will break into
subsets (e.g., country, or browser family) over which it is more
reasonable to assume conditional independence.

Let’s break the data into subsets SSSi whose union covers all
traffic: ∪iSSSi = I. The SSSi might be countries, or blocks of IP
addresses, or browser families, or intersections of these things.
For example, the SSSi might be the intersection of country
and browser family, so that Mexico-Chrome, France-Firefox,
Vietnam-Edge, etc are instances. We will use a set of features
xxx that are mutually independent conditioned on SSSi :

P(x j,xk|bot,SSSi) = P(x j|bot,SSSi) ·P(xk|bot,SSSi) for xk 6= x j.

Given a set of features λλλ(x j), we’ll say that x j is independent
of features in λλλ(x j) conditioned on SSSi (e.g., hour-of-day is
independent of State given Mexico-Chrome) if for xk ∈ λλλ(x j):

P(x j,xk|bot,SSSi) = P(x j|bot,SSSi) ·P(xk|bot,SSSi).

Description
xk Categorical feature
Nk Cardinality of xk
xxx Vector of features, e.g., (x0,x1,x2, · · · ,xM−1)
SSSi Subset of the data; e.g., a single country
P(xxx) Observed distribution of xxx
P(xxx|bot) Distribution of xxx in benign traffic
P(xxx|bot) Distribution of xxx in malicious traffic
P̂(xxx|bot) Estimate of P(xxx|bot)
α Fraction of traffic that is benign
λλλ(x j) Set of features conditionally independent of x j|SSSi
µµµ(λλλ(x j)) Set of unattacked buckets of features in λλλ(x j)

Table 1: Explanation of variables used.

We’ll denote this x j ⊥ λλλ(x j)|SSSi. This does not imply that
features in the set λλλ(x j) are mutually independent; in general
they are not.

Obviously, the received distribution is a mixture of benign
and bot, and the benign distribution can be factored:

P(xxx|SSSi) = αi ·P(xxx|bot,SSSi)+(1−αi) ·P(xxx|bot,SSSi)

= αi ·∏
x j∈xxx

P(x j|bot,SSSi)+(1−αi) ·P(xxx|bot,SSSi).

Here αi is the fraction of traffic that is benign in SSSi, that is

αi = |C(xxx|SSSi)|/(|C(xxx|SSSi)|+ |B(xxx|SSSi)|)

The marginal distribution along x j is:

P(x j|SSSi) = αi ·P(x j|bot,SSSi)+(1−αi) ·P(x j|bot,SSSi). (6)

Now denote as µµµ(λλλ(x j)) the (possibly empty) set of buckets
of the features in λλλ(x j) that receive no attack traffic within SSSi.
This means that P(x j|bot,SSSi,µµµ(λλλ(x j))) = 0, and hence:

P(x j|SSSi,µµµ(λλλ(x j))) = P(x j|bot,SSSi). (7)

That is, over subset SSSi, we can estimate the clean distribution
of feature x j by restricting to the unattacked buckets µµµ(λλλ(x j))
of any feature conditionally independent of x j; i.e. xk ∈ λλλ(x j).
So, our odds, over SSSi, becomes:

P(bot|xxx,SSSi)

P(bot|xxx,SSSi)
=

P(xxx|SSSi)

αi ·∏ j P(x j|bot,SSSi)
−1. (8)

We can now simply use (7) to get the values of P(x j|bot,SSSi).

5.1 Finding the clean distributions
We’ve seen, in (7), that unattacked buckets of a feature xk
lead us to the clean distribution of any features x j that are
conditionally independent of xk. We next tackle the question
of how to identify unattacked buckets.



Suppose that a set bbb = {b0,b1, · · · ,bd−1} of d different
buckets of features in λλλ(x j), are unattacked. From (7) we get
that:

P(x j|SSSi,bm) = P(x j|SSSi,bn) = P(x j|bot,SSSi), ∀ m,n ∈ bbb. (9)

That is, since all unattacked buckets of features in λλλ(x j) give
the clean distribution of x j their marginal distributions will be
equal. We next show that the converse is almost true. That is, if
several buckets have the same marginal distribution then they
are unattacked if we can assume that the abuse traffic does
not precisely match the clean distribution (e.g., at least some
of the benign distributions are unknown to or unachievable
by the attacker).

Let’s examine what happens when the marginal distribu-
tions of a set bbb = {b0,b1, · · · ,bd−1} of the buckets of fea-
tures in λλλ(x j) are equal; i.e., P(x j|SSSi,bm) = P(x j|SSSi,bn) =
φφφ ∀ m,n ∈ bbb for some fixed φφφ (but we don’t know whether or
not they are unattacked).

From (6) we get that ∀ bm ∈ bbb:

φφφ = αmP(x j|bot,SSSi,bm)+(1−αm)P(x j|bot,SSSi,bm)

= αmP(x j|bot,SSSi)+(1−αm)P(x j|bot,SSSi,bm). (10)

Recall that P(x j) is an N j-dimensional unit vector. Thus, for
a single bm, the righthand side of (10) is a vector that lies on
the line segment joining P(x j|bot,SSSi) and P(x j|bot,SSSi,bm).
When we consider all of the bm, φ is the intersection of these
d line segments. Since all of these line segments originate
at P(x j|bot,SSSi) clearly φ = P(x j|bot,SSSi) is one solution. This
implies that all of the αm = 1, the bm contain no abuse traffic;
i.e., as desired. we have found the clean distribution.

Other solutions are possible. However, since φ is the inter-
section of line segments that already intersect at P(x j|bot,SSSi)
this requires that all of the line segments are the same: i.e.,
P(x j|bot,SSSi,bm) = P(x j|bot,SSSi,bn) for every bm,bn ∈ bbb. This
in turn requires that all of the αm are equal.

Recall that:

αm = |C(xxx|SSSi,bm)|/(|C(xxx|SSSi,bm)|+ |B(xxx|SSSi,bm)|).

Hence α0 = α1 = · · ·= αd−1 gives:

(|C(xxx|SSSi,b0)|, |C(xxx|SSSi,b1)|, · · · , |C(xxx|SSSi,bd−1)|)
∝ (|B(xxx|SSSi,b0)|, |B(xxx|SSSi,b1)|, · · · , |B(xxx|SSSi,bd−1)|) .

This says that the ratio of abuse to clean traffic is identical
in all d buckets. Since it’s implausible that this happens by
chance it implies that the attacker knows, and can precisely
achieve, a d-dimensional sub-space of the clean distribution.
In other words, we assume that achieving the same relative
traffic strengths across d buckets is not possible if the attacker
doesn’t know the distribution.

A sole remaining exception is the corner case where
α0 = · · · = αd−1 = 0; i.e., our d buckets contain no clean

traffic at all. If an attacker sends identical traffic on, e.g.,
Chrome57, Chrome58, Chrome59 these buckets would have
identical marginals for every x j (assuming no clean traffic
from those browsers). We easily rule this corner case out if
at least one bucket in bbb is known to have at least some legiti-
mate traffic. Buckets from features such as state, city, ISP, for
example, should suffice: the mixture of benign-to-abuse will
vary, but there should be no state or city or ISP contributing
zero legitimate traffic.

A toy example may clarify the process. Suppose we seek
the clean distribution of x j and have that λλλ(x j) = {browser,
state, domain} (i.e., x j is conditionally independent of those
features in the clean traffic). Suppose we satisfy (9) with
buckets bbb = {Chrome71, Chrome72, Edge84, Iowa, Oregon,
Ohio, yahoo, hotmail}. This tells us that those buckets are
unattacked unless the ratio of abuse to clean traffic is the
same in each of those buckets. This says that the attacker can
precisely achieve a d = 8-dimensional subset of the benign
distribution. The corner case where traffic from these buckets
is all malicious instead of all benign is ruled out since it
is implausible that, e.g., all traffic from Oregon or yahoo is
malicious.

Notes: Exact equality of distributions is of course hard to
achieve; for approximate equality of distributions we use the
Kullback-Leibler (KL) divergence [16, 25]. Note also that we
can be fairly tolerant of false negatives when searching for
unattacked buckets: if 20 out of 50 buckets of a feature are
unattacked it doesn’t matter very much if we find only 5 of
them.

5.2 Overall algorithm
We start with a collection of subsets SSSi such that ∪iSSSi covers
all of the data (using different countries as the subsets is our
default). We seek classification rules for a set of features xxx
that are mutually independent conditioned on SSSi. We need a
collection of conditional independence relations:

x j ⊥ λλλ(x j)|SSSi for each x j ∈ xxx. (11)

In Section 6 we’ll give the reasoning behind the independence
relations we use in the case of web-logs.

We find an estimate for the clean distribution of feature x j
by searching (among features that are independent of x j con-
ditioned on SSSi) for clusters of buckets where P(x j|SSSi,bm)≈
P(x j|SSSi,bn) for every bm,bn in the cluster.

A matrix interpretation of the approach in Section 5.1
aligns well with the implementation. Let ΩΩΩ,ΣΣΣ, and ΘΘΘ be the
observed, bot and bot matrices of marginal distributions of
x j over all the bins of all the features in λλλ(x j). These have
columns P(x j|SSSi,bm),P(x j|bot,SSSi,bm) and P(x j|bot,SSSi,bm)
for every bucket bm of every feature xk ∈ λλλ(x j) respectively.
Calculating ΩΩΩ is efficiently implemented as a matrix pivot
operation. Clearly, we have:

ΩΩΩ = α ·ΣΣΣ+(1−α) ·ΘΘΘ.



Algorithm 1 PROS approach to find clean distributions. We iterate over the subsets for which conditional independence is
defined and over each feature. Note that for features where the clean distribution is slowly-varying this training need not be
re-run very often.

for SSSi in {SSSi} do
for x j in xxx do

ΩΩΩ(x j) = data.pivot(index= x j, columns = λλλ(x j), aggfunc = sum())
µµµ(λλλ(x j)) = bins corresponding to largest cluster of co-linear columns of ΩΩΩ(x j)

P̂(x j|SSSi,bot), Avg{P(x j|SSSi,µµµ(λλλ(x j)))}
end for

end for

Here ΣΣΣ is rank-one, since P(x j|bot,SSSi) is independent of every
xk ∈ λλλ(x j). However ΘΘΘ will in general be of full rank (since
we are not assuming any independence relations in the abuse
traffic). As the sum of rank-one and (in general) full-rank
matrices, ΩΩΩ will also in general be full-rank.

To find the clean distribution of x j we seek to form a rank-
one matrix ΩΩΩ

′
with a subset of the columns of ΩΩΩ :

ΩΩΩ
′
= α ·ΣΣΣ

′
+(1−α) ·ΘΘΘ

′
.

The columns of this rank-one matrix ΩΩΩ
′

give the clean distri-
bution. Algorithm 1 describes the approach.

Once we have estimates of the clean distributions we calcu-
late the odds (i.e., compute (8)); this is done in Algorithm 2.
This is simply an implementation of (8) with αi = 0.5 (recall
from Section 4 that order is unaffected by α). The output
of the algorithm is a set of rules that covers every possible
observation. Every possible tuple of the features has a rule
as generated by (8) and this is done for every subset SSSi. For
example, if xxx = (x0,x1,x2,x3) is (browser, State, hour-of-day,
organization) then a typical rule might be

(Chrome77.0.3770, Georgia, 13, Comcast),

together with the odds estimated in (8). Table 2 in Section 7
gives an example.

Algorithm 2 Calculate Rules: we use the clean distributions
estimated in Algorithm 1. Note that updating rules can be
re-run very often.

for SSSi in {SSSi} do
Odds(xxx|SSSi) = P(xxx|SSSi)/(0.5 ·∏ j P̂(x j|bot,SSSi))−1

end for

5.3 Implementation notes
Conditional independence rules and subsets: We go
through our reasoning for conditional independence relations
for the concrete example of web-logs in Section 6. While we
don’t claim a procedure that is general for all applications
and feature sets, this task is done only once, and we generally

have a small number of features, so decisions on pairwise
independence can be decided manually. Note that we can con-
join features: if x j is independent of both browser and week
it is independent of browser-week. This expands the number
of bins (and can make it easier to find unattacked ones) at the
cost of fewer data samples per bin.

Observe that PROS simply detects violations of our inde-
pendence assumptions. If (11) holds then ΣΣΣ is rank-one. If
what we observe, ΩΩΩ, is not rank-one then either the indepen-
dence assumptions are wrong, there is a corrupting compo-
nent (1−α) ·ΘΘΘ, or sampling effects are too great (precise
independence is never achieved when we have finite number
of samples). Thus, if we have a lot of data and high confi-
dence in our independence assumptions, any deviations from
independence in observed traffic indicates abuse.

PROS fails safely: if we are wrong about our independence
assumptions, or there are no unattacked bins, then we will be
unable to find a rank-one subset of the columns of ΩΩΩ.

Estimating α: While the ordering of our odds estimates is
independent of α it would still be very valuable to estimate it
accurately. If we know P(xxx) and P(xxx|bot) it can be seen that
(2) still under-determines α and P(xxx|bot); i.e., there is a range
of possible solutions. The most conservative choice is to take
the maximum value of α consistent with P(xxx) and P(xxx|bot);
this attributes as much traffic as possible to benign rather than
malicious sources. This is found by taking the orthogonal
projection of P(xxx) onto P(xxx|bot) :

α̂ =
〈P(xxx),P(xxx|bot)〉
〈P(xxx|bot),P(xxx|bot)〉

. (12)

This is an upper bound. With this choice P̂(xxx|bot), [P(xxx)−
α̂ ·P(xxx|bot)]/(1− α̂) will be orthogonal to P(xxx|bot), but will
not necessarily have non-negative coefficients (and thus can’t
be a probability). This suggests our upper bound is loose. We
can improve it by reducing α̂ until P(xxx)− α̂ ·P(xxx|bot) has
only non-negative coefficients. This can be done by a simple
one-dimensional search.

However, a word of caution on numerical robustness
is necessary. It’s easy to show that the upper bound in
(12) is tight when class separation along xxx is good (i.e.,
〈P(xxx|bot),P(xxx|bot)〉 ≈ 0), and loose when it is not. Seeking



to improve a loose estimate by reducing α̂ as above can be
sensitive to sampling effects and works best when the volume
of data is very high.

Streaming data: When we run Algorithm 1 on streaming
data it can increase robustness to update rather than calcu-
late P̂(x j|SSSi,bot) afresh over each block. The final estimate
might be a weighted sum of the historical and current-block
estimates; we might tilt the weights heavily toward histori-
cal estimates for slowly-varying features (e.g., state, family)
and toward current-block for those that evolve rapidly (e.g.,
browser).

Concept drift: Note that our estimates of the clean distribu-
tions P(x j|bot) need not be retrained very often. Certain fea-
tures, such as browser version might need to be re-estimated
often, but others (such as geographic distribution) should be
very-slowly varying. By contrast, we expect that the bot dis-
tribution to change very rapidly. Thus Algorithm 2 might be
re-run very often.

Feature cardinality: categorical features often have high
cardinality with many rare tokens. We run an encoding stage
that maps the least-common tokens into a single ‘other’ bin.
This procedure is sometimes known as backoff.

Efficiency: The clustering in the inner loop of Algorithm 1
can be a brute-force search if necessary. Since we deal with
a small number of categorical features that have dozens or
so buckets even a full N2 search (where N is the sum of the
cardinalities of features in λλλ(x j)) might not be unmanageable.
We are also aided by the fact that we are tolerant of false neg-
atives (i.e., unattacked bins that we don’t find) in this search.
So long as we find a few unattacked buckets we can estimate
the benign distribution. Thus, if a full N2 is too expensive we
can do a search only over a sample of the buckets, and repeat
several times if the sub-searches fail. Observe that Algorithm
1’s only dependence on the size of the dataset comes from the
matrix pivot operation; after that the complexity of finding
unattacked bins is determined by the feature cardinalities. An
interesting approach (which we have not implemented) to
finding rank-one submatrices efficiently is described by Doan
and Vavasis [18]. Running Algorithm 1 on the 3m row dataset
of Section 6 took about 30 minutes on a 2.2GHz dual proces-
sor PC with 128G of RAM, and Algorithm 2 took 4 minutes.
This does not include the time for parsing userAgent strings
into its components.

Interpretability and Identification of clusters of bot ac-
tivity: The rules output by Algorithm 2 are used to assign bot
likelihood to each request, but just as importantly they help
identify clusters of bot activity. For example, suppose a bot
sends lots of traffic from Florida using IE9. In this case in a
browser-state ruleset the rule “Florida and IE9” will appear
near the top (when sorted by bot likelihood). That bot activ-
ity is often clustered in feature-space is exploited in many
detection approaches [11, 13, 35, 36, 38, 39].
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Figure 1: Lower bound for the ROC curves of PROS and
Isolation Forests using features browser, family, status
and path. Having labels for only a portion of the positive
samples (and none for the negatives) the true ROC curve is, in
each case, above and to the left of the curve shown. (a) Solid
line: lower-bound ROC curve for PROS (AUC=0.877). (b)
Dash dot line: lower-bound ROC curve for Isolation Forests
(AUC=0.532).

6 Evaluation on web-log dataset

The site www.secrepo.com offers a repository of various
security-relevant datasets. The daily logs of all web requests
are made available under the Creative Commons Attribution
4.0 License. It receives approximately 15k requests per week,
so that five years’ worth of logs comprises about 3m rows in
2,000 separate files.4 Our capture covers dates from January
2015 to August 2021.

The logs are stored in Apache Combined Log format [4].
The recorded fields are: IP address, HTTP status,
response size, referer, userAgent, timestamp,
HTTP request. From IP address we derive the features
city, state and country using an IP geolocation service;
e.g., 3.94.31.115 yields ‘Ashburn’, ‘Virginia’, ‘United
States’. From userAgent we derive browser, family,
OS, osFamily using the Python library user_agents;
e.g., ‘Mozilla/5.0 (Windows NT 6.3; WOW64; rv:56.0)
Gecko/20100101 Firefox/56.0’ yields ‘Firefox56.0’,
‘Firefox’, ‘Windows8.1’, ‘Windows’. From timestamp
we derive day, week, month and year. From HTTP
request we derive method and the path as the sub-

4We have no affiliation with the site, but did communicate with the site
administrator who confirmed certain details below.

www.secrepo.com


directory of the requested item; e.g., the request GET
/self.logs/access.log.2019-04-15.gz yields GET and
/self.logs.

Given these features the set of conditional independence
relations we chose are as follows:

browser ⊥ {country,city,state,path,status} | family,
status ⊥ {browser,week, family,osfamily} | country,

path ⊥ {browser,week, family,osfamily} | country,
family ⊥ {city,state,path,status} | country}.

For example, the first line indicates that (within a browser
family such as Chrome) we expect version to be independent
of country, city, state, path and HTTP response status. Our rea-
soning is that version should be relatively independent of loca-
tion since modern browser families regularly push automatic
updates and regional user preferences have little chance to
affect P(browser|family,bot).5 Similarly, we assume (within
a browser family) that benign users of, say, Chrome82 are not
more or less likely to visit particular paths or receive partic-
ular response codes than benign users of any other Chrome
version.

The second line says that, within a country, we expect
different browser versions, browser families, etc are equally
likely to receive a particular response. Our reasoning is that,
for example, human Firefox users should receive responses
of 200 (i.e., success) and 404 (i.e., file not found) at the same
rate as Chrome and Safari users.

As Chio and Freeman explain [15] there is little prospect
of obtaining human-chosen labels for web-log requests. How-
ever, this logset contains three groups of data which we can
label as automated traffic.

1. Traffic identified as automated by the site. The site
responds to certain requests with HTTP response 418
“I’m a teapot.” This response is often used by servers
for [1] “requests they do not wish to handle, such as
automated queries.”

2. Traffic requesting (non-existent) WordPress re-
sources. Malicious bots will often probe for WordPress
resources looking for vulnerable configurations. The
site administrator confirmed to us that the site has never
had any WordPress installation. Thus, all requests to
wp-login, wp-admin, wp-includes etc can be con-
sidered honeypot requests; e.g., the logset contains 90k
requests to wp-login, the authentication entry point for
the WordPress dashboard.

3. Traffic requesting the daily logs. The site contains
five years of daily logs in 2,000 individual files with
naming format access.log.YYYY-MM-DD.gz. Obvi-
ously, requests sampling these logs one-at-a-time will

5This does not imply distribution of browser family is independent of
country (which we do not assume).

be dwarved by scripted requests. Inspection confirms
that requests for these files are strongly dominated by
repeated bursts (i.e., from the same userAgent and IP
address) requesting a large number of consecutive files.
Of course, while these bot requests are not harmful they
are the type of automated activity that PROS attempts to
identify.

Thus, we label all requests with HTTP response status 418,
or containing ‘wp-’ or ‘access.log’ in the request field as bot.
Together they cover 39.1% of requests in the logset. Harness-
ing the output of a rules-based system as a source of labels is
common practice (apparently including Facebook’s abusive
account detection system [39]).

Generating a Receiver Operator Characteristic (ROC) curve
requires labels for all samples. Given labels for only a por-
tion of the positive samples we can however bound the ROC
curve. Since we have labels only for a portion of the positives
(and count everything else as negative) we under-estimate the
‘True’ counts (i.e., T P and T N) and over-estimate the ‘False’
counts (i.e., FP and FN). We denote these available counts
as T P

′
etc to distinguish them from the actual counts T P etc.

Thus, a plot of

t
′
p = T P

′
/(T P

′
+FN

′
) versus f

′
p = FP

′
/(FP

′
+T N

′
)

will always be below and to the right of the ROC (since tp ≥ t
′
p

and fp ≤ f
′
p).

Using the conditional independence rules above we run Al-
gorithm 1 to generate the clean distributions for browser,
family, path and status and Algorithm 2 to generate
rules. The dataset is too small to allow accurate per-country
estimates for the features status, path and family or per-
family estimates of browser except for Chrome and Firefox.
To compensate we compute global estimates of the former
(i.e., lump traffic from all countries together) and compute
browser estimates only for Chrome and Firefox. Since we
expect distributions of family, path and status to be rel-
atively time-invariant we ran over the entire dataset. When
seeking clean distributions of status and path we conjoined
browser and week, so that Algorithm 1 sought unattacked
bins over a much larger set. As for browser, since its clean
distribution evolves we estimate its clean distribution, and
generate rules, over one year blocks (with sufficient traffic it
would be advisable to re-estimate browser distribution much
more regularly, e.g., daily). Only Chrome and Firefox had
sufficient traffic to allow us to estimate the distribution of ver-
sions. Thus, we calculated one ruleset using browser, path
and status for Chrome and Firefox traffic and another rule-
set using family, path and status for all other traffic. The
calculated rules allow us to associate a likelihood of being
bot with every request.

Figure 1 shows our results. The solid line is the lower bound
for the ROC curve (i.e., on the available labels); the Area



Under Curve (AUC) is 0.877. For comparison we show the
performance of an Isolation Forest classifier using family,
path and status (using the sklearn implementation and
one-hot encoding to map categorical variables to numeric).
Clearly, Isolation Forests struggle to do better-than-random;
the AUC is 0.532. As explained in Sections 2 and 3 Isolation
Forests work well on numeric features, but struggle when
categorical features are one-hot encoded to numeric.

Thus, PROS significantly outperforms Isolation Forests.
However, at low “false positive” rates (e.g., f

′
p < 0.05) it

appears to do poorly. A possible reason is that we have la-
bels only for some of the positives: it’s likely that there is
scripted activity not captured by the three groupings we de-
tailed above. Obviously it is difficult to achieve low “false
positive” rates when an unknown fraction of positives are
actually mis-labelled as negatives.

Sorting rulesets by bot likelihood allows us to identify clus-
ters of bot activity. For example, if we sort the browser ruleset
a clear pattern that appears is certain out-of-date browsers
from major browser families being used for bot activity. For
example, Firefox40.1 accounts for 34.7% of all Firefox traffic
in the dataset even though it was superseded in September
2015; Chrome34.0.1847 accounts for 18.0% of all Chrome
traffic in the dataset even though it was already six major
versions out-of-date by the earliest date in our dataset.

While bots often seem to use legacy versions of major
browsers it would be hasty to conclude we can block all
such traffic. For example, Chrome49.0.2623 also accounts for
significant traffic long after it was superseded, but does not
feature as having high bot likelihood in our browser rulesets.
Upon investigation it emerges this was the last version of
Chrome supported on Windows XP; so this is likely legitimate
traffic from old systems that can’t update.

7 Evaluation on Twitter dataset

Twitter exposes an API that allows downloading certain in-
formation about individual accounts and about tweets [2].
It allows retrieval of information such as the screen_name,
name, profile description, creation date, numbers of accounts
followed, number of followers, number of tweets liked, most
recent tweet, etc.

The API is throttled, so that the amount of data that can
be downloaded is very restricted. The list of id’s of followers
of an account can be downloaded at a rate of about 5000
per minute; the details of those follower accounts can be
downloaded at a rate of about 100 per minute.

To study an account we do not need a list of all of the
followers, a sample probably suffices. Unfortunately the API
does not provide a sampling mechanism. Hence, for a target
account, we first download the entire list of follower id’s, and
then uniformly at random select a subset of its followers to
download. Since the follower list for a single account with
10 million followers would take about 33 hours to download

we restricted our attention to accounts that have 3 million
followers and below. For example, to sample 20k followers
of an account with 500k followers takes approximately 60×
(500/5+20/0.1) = 300 minutes or 5 hours.

In addition, the Botometer project at Indiana University
[17] exposes an API that calculates their estimate that a Twit-
ter account is bot. As the most accessible benchmark we
compare our estimates against those from Botometer, as well
as against Isolation Forests.

7.1 Dataset
Our dataset is a convenience sample acquired between January
10 and May 5 of 2021. It contains 159 target accounts; for
each target we downloaded profile information on a uniform-
at-random sample of its followers. In all we gathered the
profile details of 5.1 million Twitter accounts; i.e., an average
of 32k followers per target.

We chose target accounts by searching Twitter for key-
words ‘election fraud’, ‘brexit’, ‘vaccine choice’, and ‘climate
hoax’ and selecting the first accounts that matched our cri-
teria of follower count between 20k and 3 million. For each
of these chosen targets we downloaded the entire list of fol-
lowers, selected at least 20k followers (uniformly at random)
and downloaded the details of those accounts. We also added
a small number of target accounts (e.g., @USENIXsecurity,
@SuezDiggerGuy) to check that the clean distributions found
are robust and not particular to the topics covered by the
selected target seed accounts. We also added two target ac-
counts acknowledged to have purchased bot followers (see
Section 7.2.1). Our goal is simply that the dataset contain
some non-trivial mixture of legitimate and abuse accounts.
We emphasize that we make no claim that this dataset is in
any way representative of the overall Twitter population.

We revisited all 159 of the target accounts on June 2,
2021. Of the 159 five had been suspended with a notice
reading “Twitter suspends accounts which violate the Twitter
Rules.” This differs from the notice if an account is closed,
and presumably indicates problematic behavior. Ranking the
accounts from highest to lowest estimated bot follower-ship
the five suspended target accounts were in positions #2, #23,
#27, #41 and #61.

In addition to the retrieved features we derive from them
certain others that are useful. In particular we will use
pattern, year, monthyear, and client.
Pattern: a mapping of the account screen_name that maps
lower-, upper-case, digits and special characters to ‘l’, ‘U’, ‘d’
and ‘s’ respectively. With the exception of ‘d’, consecutive
runs of the same character in the mapping are collapsed to
a single instance. Thus, ‘JohnDoe78’ maps to ‘UlUldd’ and
‘johndoe78’ maps to ‘ldd.’ This mapping is a minor modifica-
tion of the one used by Xiao et al [38].
Bins: we find it useful to define certain binary features.
noLocn, noDesc and noPic indicate empty location and de-



Figure 2: Clean distributions for pattern and client estimated by Algorithm 1. Observe that in each case we have d = 6
buckets giving very similar marginal distributions. That is, P(x j|bm) ≈ P(x j|bn) where bm,bn ∈ bbb and bbb is the set of buckets
listed in the graph legend. Each marginal is α ·Clean+(1−α) ·Abuse. Section 5.1 explains why identical marginals implies that
we have found the clean signal (i.e., α≈ 1).

scription fields and if the account has a default profile picture.
noStat indicates that the account has zero tweets. In addi-
tion we form a composite feature Bins by conjoining all
four. For example, True, False, True, False would indicate
empty location and default profile picture but a non-empty de-
scription and that the account has tweeted at least once. This
Bins feature is conjoined with others in the set of conditional
independence relations below.

The set of conditional independence relations we assume
are as follows:

pattern ⊥ {targetBin,clientBin,yearBin},
monthyear ⊥ {patternBin,clientBin, targetBin},

client ⊥ {targetBin,patternBin,yearBin},
year ⊥ {clientBin,patternBin}.

Note that clientBin, patternBin, targetBin etc re-
fer to conjoining the client (resp. pattern, target) fea-
ture with the four binary features noLocn, noDesc, noPic,
noStat which indicate, respectively, that the location, descrip-
tion, picture fields are empty or that the account has never
tweeted.

Using these conditional independence relations we run
Algorithm 1 to find the clean distributions of pattern,

monthyear, client, ratio and year. Figure 2 shows the
resulting clean distribution for pattern and client. Figure 2
(a) indicates that a cluster of d = 6 buckets among targetBin
and clientBin were found to have co-linear marginals. Fig-
ure 2 (b) indicates that a cluster of d = 6 buckets among
patternBin, yearBin and targetBin were found to have
co-linear marginals.

7.2 Measurements

We present the following analysis of Twitter data to allow
evaluation of the algorithm and to corroborate that it finds
bot-like activity. We wish to emphasize, however, that this is
not primarily a paper about Twitter or social-media bots. The
rulesets we construct are limited by the features accessible
through the API. The throttling of the API makes generating a
larger dataset and/or including activity information about the
accounts impractical. We wish to be clear that we do not claim
to outperform algorithms that have access to graph, connectiv-
ity and activity information. Our goal is simply to demonstrate
efficacy of the approach. Nonetheless, we achieve comparable
performance to Botometer [17], even though our approach is
generic rather than specific to social-media bots and we use a
more limited set of features.



7.2.1 Accounts known to have bot followers

We obtained the Twitter handles of two accounts from indi-
viduals who acknowledged purchasing followers (see Section
7.3 for a discussion of ethical considerations). They did so
in a discussion group (on a non-Twitter platform) dedicated
to building social media engagement. After contacting them
on a private messaging channel they were willing to share
the Twitter handles with us, and the dates and size of the
purchased blocks. They did not indicate whether they owned
these accounts or were acting on behalf of others.

This gives us a source of labels to check efficacy. These are
Acct_80 and Acct_159 in our dataset. Of Acct_80’s follow-
ers ≈ 65% were purchased; of Acct_159’s ≈ 60% were pur-
chased. Since both accounts would have had organic growth at
the same time as bot followers were being added we took our
bot samples as the first 1k followers of the account (i.e., be-
fore purchases were a factor) and our bot samples as the first
1k followers beginning after the largest purchase event (e.g.,
Acct_80’s bot followers were purchased in several different
blocks). As a verification step, we manually examined 30 pos-
itive and 30 negative samples for both accounts; the positive
samples exhibited considerably lower levels of engagement
with the target account’s content.

We created a ruleset with features target, pattern,
client and year. In the creation of this ruleset Algorithm
2 would have used the clean distributions of pattern and
client shown in Figure 2. Using the odds estimated by Algo-
rithm 2 and the labels from our positive and negative samples
we analyze Acct_80 and Acct_159.

Figure 3 shows ROC curves for these two accounts. In
both cases we identify almost half of the true positives at a
very low false positive rate. This indicates that half of the
bots are easily separated from organic accounts, but things
become progressively more difficult thereafter. The curves
produced by Botometer [17] and Isolation Forests (using one-
hot encoding) are also shown.

For Acct_80 the AUCs for PROS, Botometer and Isolation
Forests were 0.795, 0.792, 0.657 respectively. While PROS
and Botometer have similar AUCs note that our approach
outperforms Botometer when the false positive rate is low.
For consumer services, a low false positive rate is often con-
sidered mandatory: blocking legitimate users has a serious
effect on user-experience, so operating at fp < 0.01 may be
required. On this basis PROS outperforms Botometer. Ob-
serve that Isolation Forests struggle to do better than random.
For Acct_159 the AUCs for the three approaches were 0.811,
0.708 and 0.531. Again, observe that PROS does better than
Botometer when fp is low. In the interest of fairness we point
out that, since it uses account-activity features, the compari-
son with Botometer is not like-to-like. When an account has
no activity Botometer has no basis for judgement, and thus is
at a disadvantage.

Note that Xu et al [39] describing abusive account detection

Target Pattern Client Year Count Odds Btmtr
Acct_8 ldd Mobile Web (M2) 2013 404 692.85 0.93
Acct_8 other Mobile Web (M2) 2013 381 391.03 0.88
Acct_74 l Mobile Web 2009 189 165.61 0.81
Acct_74 other Mobile Web 2009 110 110.31 0.86
Acct_74 l Twitter Web Cl. 2009 3383 100.40 0.79
Acct_12 Ul None 2012 1208 73.14 0.81
Acct_8 other -1 2012 625 72.56 0.84
Acct_46 Uld None 2016 842 68.57 0.88
Acct_74 ldd Twitter Web Cl. 2009 547 64.17 0.80
Acct_46 UlUld None 2016 1512 63.86 0.82

Table 2: Example ruleset using features target, pattern,
Client and year sorted in descending order of bot-likelihood.
Thus, followers of Acct_8 with screen_name patterns ‘ldd’
whose last tweet was sent using ‘Mobile Web (M2)’ and were
created in 2013 are estimated to have a 692:1 odds of being
bot and a fraction 0.93 of them are estimated to be bot by
Botometer [17].

at Facebook report achieving AUC of 0.89. While the details
are very different and we do not claim to rival their system,
their results offer good calibration on the state-of-the-art.

7.2.2 Account clusters with randomized screen_names

We again use the ruleset generated in Section 7.2.1 (i.e.,
with features target, pattern, client and year) over
the whole dataset. We show a few rows of the output rules
in Table 2. We also include a column that gives the median
Botometer score for accounts covered by the rule. This can
be thought of as the estimated fraction of accounts covered
by the rule that Botometer estimates to be bot. Note that there
is good agreement: where our method predicts high odds of
being bot, Botometer largely concurs.

We inspected accounts covered by the rules with the high-
est odds. Many stood out as revealing additional structure
indicative of automated creation. For example, the first line of
Table 2 covers accounts with pattern ‘ldd’ following Acct_8
that were created in 2013 and whose last tweet used ‘Mo-
bile Web (M2)’ as client. This rule covers a total of 4.7k of
the followers of Acct_8 of which we had 404 in our sample
dataset (i.e., the dataset contains 30k of Acct_8’s 350k fol-
lowers). Upon inspection all of these accounts appeared to
have screen_names that were a last name followed by two
apparently random lower-case letters and two apparently ran-
dom digits. A sample of the last names is ‘colwell’, ‘nichel-
son’, ‘fischbach’, ‘langston’, ‘whistler’; a sample of the suf-
fixes is: ‘un33’, ‘ot68’, ‘eq79’, ‘zo99’, ‘iq05.’ To test the
hypothesis that these suffixes are random we compared the
empirical distribution of the last characters with a uniform
distribution of digits. The observed frequency of digits 0-9
were (38,42,36,48,35,36,38,43,42,46) while under a uni-
form distribution we would expect 40.4 in each bin. Thus the
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Figure 3: ROC curves for two accounts with acknowledged purchased bot-followers (see Section 7.3 for a discussion of ethical
considerations). We took collections of 1k followers before and during the purchase periods as our negative and positive samples.
Observe that our approach outperforms Botometer [17] at low false positive rates, but does worse thereafter, and easily beats
Isolation Forests. Note that PROS and Isolation Forests are using only features available from account profiles (e.g., target,
pattern, client and year) while Botometer uses account activity. Further, our approach is not specific to Twitter or social
media bots: it is a generic unsupervised method applicable to a wide range of problems. For Acct_80 the AUCs for PROS,
Botometer and Isolation Forests were 0.795, 0.792, 0.657 respectively and for Acct_159 were 0.811, 0.708 and 0.531.

goodness-of-fit to uniform is very good. A chi-square test con-
firms that the null-hypothesis (of uniform distribution) is not
refuted. Similarly, we also compare the observed distribution
of second-to-last character with a uniform distribution of dig-
its, and compare the third- and fourth- to last characters with
uniform distributions of the lowercase letters. In each case the
fit to uniform is excellent and a chi-square test corroborates
uniformity.

This effectively guarantees that accounts captured by this
rule were generated by a script. It is well-known that distribu-
tions of digits chosen by humans (in passwords and usernames
etc) are very far from uniform [6]. It is implausible that 404
humans acting independently choose screen_name suffixes
drawn uniformly from the available characters.

Many other clusters of accounts captured by rules with high
odds revealed structure. For example, accounts with pattern
‘Ul’ following Acct_12 whose last tweet had ‘None’ as client
(i.e., line six of Table 2) appeared to have screen_names that
were a first name followed by five apparently random lower-
case letters. A sample of the first names is ’Eugene’,‘Freida’,
‘Norma’, ‘Janette’, ‘Madeline’; a sample of the suffixes is ‘gn-
bjs’, ‘xhdke’, ‘ffbej’, ‘cdfqa’, ‘jezdk’. Again, a chi-square test
suggests that the last five characters of the 1208 screen_names
covered by this rule are uniformly distributed. Again, we point
out that this effectively guarantees that they were not produced
independently by 1208 humans.

7.2.3 Abnormal follower creation patterns

We created a simple ruleset with features target and
monthyear. This produces, for each target, a month-by-month
likelihood that follower accounts created that month are bots.
In sorting this list in descending order of odds we found that
certain targets had extremely high odds in some months (sug-
gesting the majority of their followers created in those months
were bot). Figure 4 shows examples of accounts that showed
high likelihood of having bot followers (as well as two normal
accounts for reference). Note that the distribution of follower
creation dates is very different from the distribution of dates
on which followers started following.

For reference Figure 4(a) and (b) show the distribution
of creation dates of followers of @USENIXsecurity (i.e.,
the Twitter account of the Usenix Security Symposium) and
@SuezDiggerGuy (a parody account purporting to represent
the operator of the mechanical digger attempting to free a
ship stuck in the Suez canal in March 2021). While the topics
covered by @USENIXsecurity and @SuezDiggerGuy have
little in common it can be seen that the distribution of cre-
ation dates is broadly similar (and to the clean distribution of
monthyear found by Algorithm 1 (not shown)). The distribu-
tion of creation dates for @SuezDiggerGuy shows that there
is little support for the view that surges in interest in a topic
translate into bursts in the distribution of follower creation



dates. The @SuezDiggerGuy account was created in March
2021 and interest was concentrated in the seven day period of
the blockage.

7.3 Ethical considerations

We first discuss the main Twitter dataset, used in Sections
7.2.2 and Section 7.2.3 (i.e., excluding the two targets studied
in Section 7.2.1). Since all of the information on these 157
targets is publicly visible and we do not identify any indi-
viduals we did not seek Institutional Review Board approval.
That is, all fields that we use are globally visible even to
those who do not have Twitter accounts. To mitigate possible
harm or embarrassment to individuals we do not identify any
of the individual accounts involved directly. We replace ev-
ery individual target Twitter handle with a unique identifier
(e.g., ‘Acct_27’). Exceptions are those belonging to organi-
zations (e.g., @USENIXsecurity) or parody accounts (e.g.,
@SuezDiggerGuy) where there is no risk of revealing infor-
mation that might be harmful to an individual.

Microsoft has detailed internal guidelines on how Person-
ally Identifying Information (PII) should be handled. Even
though all fields in our dataset are publicly visible we adhered
to those PII guidelines. These include that data is encrypted
at rest, is stored on a Bitlocker-enabled machine and that only
those with need have access; as a result at no time did anyone
other than the author have access.

We discuss the data from the two targets studied in Section
7.2.1 next. Purchasing bot-followers would offer a simple
source of labelled data, but since doing so violates Twitter’s
Terms of Use we did not pursue this avenue. However, in a
public forum that deals with building social media follower-
ship we encountered several individuals who openly discussed
their experiences purchasing followers for Twitter, Instagram,
Youtube and TikTok accounts. After contacting them, two of
these individuals shared the Twitter handles of accounts for
which they had purchased followers. These are the Acct_80
and Acct_159 that we used for evaluation.

We did not seek IRB approval before contacting these in-
dividuals. In retrospect, this was a mistake: seeking IRB ap-
proval or exemption might have identified risks. These risks
include that the identity of the accounts might be established:
either directly from data that we stored, or from what we pub-
lish or otherwise reveal. On the first of these risks we reiterate
our compliance with the Microsoft PII handling guidelines,
and emphasize that the dataset does not contain any profile
information, tweets, retweets, likes, follows or other activity
information about any of the target accounts: it contains infor-
mation only about followers. Hence Twitter handles, names,
account ID’s, etc of Acct_80 and Acct_159 do not appear in
the dataset. A file that maps target Twitter handle to Acct_XX
strings is stored separately, also complying with PII guide-
lines; we have deleted the entries for Acct_80 and Acct_159
in this file. We committed not to publish the Twitter handles,

Followers Description
Acct_94 2.4m Fox News TV host
Acct_15 2.4m Conservative TV and radio host
Acct_74 200k Economic inequality activist
Acct_49 50k Anti-vaccine account
Acct_48 300k Fitness and alternative lifestyle
Acct_22 300k Prominent anti-Brexit account
Acct_34 2.4m Fox News TV host
Acct_2 300k Writer for theAtlantic
Acct_128 350k Writer for Washington Post
Acct_23 200k Brexit/EU affairs journalist
Acct_12 280k Conservative commentator
Acct_8 350k Entrepreneur and ‘thought leader’
Acct_29 280k MSNBC host

Table 3: Brief description of some of the accounts mentioned.

or information that would allow them to be easily determined.
Thus, we avoid giving details such as join date, nature of
the account, etc; we don’t include a chart of follower create
dates (such as in Figure 2) which might act as a signature.
Obviously we are obliged to refuse any queries that might
de-anonymize these accounts.

Finally, we did not pay or offer to pay either individual.
In contacting them we disclosed our identity and affiliation;
we made clear that our intent was publication of our analysis
and improvement of bot detection technologies. In each case
the only information we obtained was the Twitter handle, the
number of followers purchased, and the date.

8 Discussion

Identifying clusters: The human-interpretable rules that
PROS outputs allow us to identify clusters of bot activity,
which helps with evaluation. Individual requests from a legacy
version like Chrome34.0.1847 might not seem strange, but
accounting for 18.0% of Chrome traffic years after being
superseded (as found in Section 6) seems too much for coin-
cidence. A single user with a Twitter screen_name suffix with
two random lower-case letters and two random digits is not
remarkable, but 4.7k of them, all created in 2013, all using
the same client, and all following the same account (as found
in Section 7.2.2) is powerful evidence of co-ordinated activity.
Similarly, when 82% of an account’s 200k followers have
creation dates in a single four-month period (as found in Sec-
tion 7.2.3) it is hard to reconcile with the view that these are
the results of independent actions. Identifying clusters with
related properties or behavior has been exploited by many bot
detection approaches [11, 13, 35, 36, 38, 39].

Limitations: We point out two limitations of PROS: a) it
needs a lot of data, b) the base rate of abuse must be high
enough to exceed the confidence intervals around our esti-
mates of the clean distributions.
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Figure 4: Two accounts with expected and five with unexpected distributions of follower creation dates. See Table 3 for a
description of anonymized accounts. (a) Followers of @USENIXsecurity. (b) Followers of @SuezDiggerGuy. The fact that
@SuezDiggerGuy and @USENIXsecurity have similar distributions suggests that surges of interest do not lead to surges in
follower creation dates. (c) More than 82% of the 200k followers of Acct_74 joined in the four month period Oct. 2009 to Jan.
2010. (d) Near-identical volumes of followers in a three-month period in 2016 are 25× higher than the same months in 2015 for
this Fox TV host. (e) Fewer than 4% of followers of this active anti-vaccine account were created later than June 2013. (f) More
than 70% of followers of this Washington Post political writer were created between Aug. 2015 and May 2016. (g) More than
16% of followers of this MSNBC correspondent were created in a single month.



First, recall that we estimate the clean distribution of x j
using (7): that is we restrict to the unattacked buckets µµµ(λλλ(x j))
of features conditionally independent of x j. We are thus using
a small portion of the data to estimate clean. If x j is browser
version, one of the elements, xk, of λλλ(x j) might be state and
if µµµ(λλλ(x j)) = {Iowa, Georgia, Oregon} then the confidence
intervals we can expect in our estimate of P(x j|bot) depends
on the collective amount of data from those states.

Second, observe that we identify abuse traffic using (8).
This punishes abuse traffic when the observed traffic (i.e.,
clean + abuse) exceeds what we expected (from our estimate
of clean). This requires that the volume of abuse traffic is
large enough to exceed the confidence intervals around our
estimates of clean. The more data we have the tighter our
confidence intervals will be; however very small amount of
abuse will be hard to distinguish from random fluctuation.

Avoidance mechanisms: The significant assumptions of
PROS are that our conditional independence relations hold,
and that abuse traffic does not precisely match clean. Once
clean distributions are found PROS punishes statistically sig-
nificant deviations. The independence relations are proper-
ties of the benign traffic: nothing that attacker can do affects
whether we chose correctly. Thus, the main avoidance mech-
anisms require sending abuse traffic that resembles clean as
much as possible.

Bot detection as frontend to analytics: The utility of de-
tecting bot traffic is not limited to making block/no-block
decisions. Traffic analysis is important to understand how
a service is used and to evaluate potential changes. Obvi-
ously, it is hard to have confidence in judgements if the hu-
man traffic we wish to analyze is contaminated by unknown,
and wildly fluctuating, amounts of scripted traffic. Scenar-
ios where we wish to improve the quality of data input may
have very different expectations of a classifier than one that
will block customer traffic. For example, an operating point
of (tp, fp) = (0.8,0.05) would be unacceptable for most con-
sumer services (i.e., falsely blocking 5% of benign customer
requests) but delivers an excellent SNR boost prior to data
analysis.

9 Conclusion

We have described a method to identify abuse in traffic. Our
approach hinges on the observation that if we can identify
bins of a feature x j that receive no attack traffic then we
can estimate the benign distribution of any feature that is
independent of x j. The key contribution is to show how these
unattacked bins can be located simply and reliably.
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